This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215337 #11 Jul 22 2018 10:44:39 %S A215337 5,4,8,15,36,74,180,411,996,2400,5940,14707,36972,93276,237264,606030, %T A215337 1556028,4009118,10367892,26888925,69930264,182296212,476262756, %U A215337 1246695079,3269321352,8587452204,22590645408,59510993607,156973954860,414552239458,1096017973380,2900753084400,7684758670248,20377460964156,54081265456116 %N A215337 Cyclically smooth Lyndon words with 5 colors. %C A215337 We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1. %H A215337 Vincenzo Librandi, <a href="/A215337/b215337.txt">Table of n, a(n) for n = 1..200</a> %H A215337 Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551v1 [math.CO], 2008. %F A215337 a(n) = sum_{ d divides n } moebius(n/d) * A208774(d). %e A215337 The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 5 colors (using symbols ".", "1", "2", "3", and "4") are: %e A215337 .... 1 . N %e A215337 ...1 4 ...1 N L %e A215337 ..11 4 ..11 N L %e A215337 .1.1 2 .1 N %e A215337 .111 4 .111 N L %e A215337 .121 4 .121 N L %e A215337 1111 1 1 N %e A215337 1112 4 1112 N L %e A215337 1122 4 1122 N L %e A215337 1212 2 12 N %e A215337 1222 4 1222 N L %e A215337 1232 4 1232 N L %e A215337 2222 1 2 N %e A215337 2223 4 2223 N L %e A215337 2233 4 2233 N L %e A215337 2323 2 23 N %e A215337 2333 4 2333 N L %e A215337 2343 4 2343 N L %e A215337 3333 1 3 N %e A215337 3334 4 3334 N L %e A215337 3344 4 3344 N L %e A215337 3434 2 34 N %e A215337 3444 4 3444 N L %e A215337 4444 1 4 N %e A215337 There are 24 necklaces (so A208774(4)=24) and a(4)=15 Lyndon words. %t A215337 terms = 40; %t A215337 sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}]; %t A215337 vn = Table[Round[sn[n, 5]], {n, terms}]; %t A215337 vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* _Jean-François Alcover_, Jul 22 2018, after _Joerg Arndt_ *) %o A215337 (PARI) %o A215337 default(realprecision,99); /* using floats */ %o A215337 sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); %o A215337 vn=vector(66,n, round(sn(n,5)) ); /* necklaces */ %o A215337 /* Lyndon words, via Moebius inversion: */ %o A215337 vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d])) %K A215337 nonn %O A215337 1,1 %A A215337 _Joerg Arndt_, Aug 13 2012