This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215338 #12 Jul 22 2018 10:43:11 %S A215338 7,6,12,23,56,118,292,683,1692,4180,10604,26978,69720,181162,475072, %T A215338 1252756,3324096,8861054,23729740,63786792,172066648,465566598, %U A215338 1263208676,3435891568,9366558088,25585826404,70019830220,191943097314,526978629656,1448862393216,3988658225028,10993822451304,30335737458872,83793421017568 %N A215338 Cyclically smooth Lyndon words with 7 colors. %C A215338 We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1. %H A215338 Vincenzo Librandi, <a href="/A215338/b215338.txt">Table of n, a(n) for n = 1..200</a> %H A215338 Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551v1 [math.CO], 2008. %F A215338 a(n) = sum_{ d divides n } moebius(n/d) * A208776(d). %e A215338 The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 7 colors (using symbols ".", "1", "2", "3", "4", "5", and "6") are: %e A215338 .... 1 . N %e A215338 ...1 4 ...1 N L %e A215338 ..11 4 ..11 N L %e A215338 .1.1 2 .1 N %e A215338 .111 4 .111 N L %e A215338 .121 4 .121 N L %e A215338 1111 1 1 N %e A215338 1112 4 1112 N L %e A215338 1122 4 1122 N L %e A215338 1212 2 12 N %e A215338 1222 4 1222 N L %e A215338 1232 4 1232 N L %e A215338 2222 1 2 N %e A215338 2223 4 2223 N L %e A215338 2233 4 2233 N L %e A215338 2323 2 23 N %e A215338 2333 4 2333 N L %e A215338 2343 4 2343 N L %e A215338 3333 1 3 N %e A215338 3334 4 3334 N L %e A215338 3344 4 3344 N L %e A215338 3434 2 34 N %e A215338 3444 4 3444 N L %e A215338 3454 4 3454 N L %e A215338 4444 1 4 N %e A215338 4445 4 4445 N L %e A215338 4455 4 4455 N L %e A215338 4545 2 45 N %e A215338 4555 4 4555 N L %e A215338 4565 4 4565 N L %e A215338 5555 1 5 N %e A215338 5556 4 5556 N L %e A215338 5566 4 5566 N L %e A215338 5656 2 56 N %e A215338 5666 4 5666 N L %e A215338 6666 1 6 N %e A215338 There are 36 necklaces (so A208776(4)=36) and a(4)=23 Lyndon words. %t A215338 terms = 40; %t A215338 sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}]; %t A215338 vn = Table[Round[sn[n, 7]], {n, terms}]; %t A215338 vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* _Jean-François Alcover_, Jul 22 2018, after _Joerg Arndt_ *) %o A215338 (PARI) %o A215338 default(realprecision,99); /* using floats */ %o A215338 sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); %o A215338 vn=vector(66,n, round(sn(n,7)) ); /* necklaces */ %o A215338 /* Lyndon words, via Moebius inversion: */ %o A215338 vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d])) %Y A215338 Cf. A208776 (cyclically smooth necklaces, 7 colors). %Y A215338 Cf. A215333 (smooth necklaces, 7 colors), A215334 (smooth Lyndon words, 7 colors). %K A215338 nonn %O A215338 1,1 %A A215338 _Joerg Arndt_, Aug 13 2012