This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215367 #19 Apr 03 2023 10:36:13 %S A215367 2,2,3,4,7,8,11,15,19,29,32,57,90,94,249,299,300,311,353,394,396,2062, %T A215367 3278,3739,6463,6718,10018,17745,21352,24991,26041,35290,56815,72833, %U A215367 90265,102810,139616,275876,301148,409631,412163,419815,646697,728882,892522,1135784,1251758,1366768 %N A215367 Lengths of binary representations of prime Fibonacci numbers. %C A215367 Some of the larger entries may only correspond to probable primes. %C A215367 As of August 2012, the index of last provable Fibonacci prime is A001605(33)=81839, that is, a(n) corresponds to a probable prime for n>33. %H A215367 C. K. Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=FibonacciPrime">Fibonacci prime</a> %H A215367 Henri & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/prptop.php">Probable primes</a> %F A215367 a(n) = A070939(A005478(n)) = A070939(A000045(A001605(n))). %e A215367 Tenth prime Fibonacci number is A005478(10) = 433494437, 29 digits in the binary representation, so a(10)=29. %t A215367 Length /@ IntegerDigits[Select[Fibonacci[Range[1000]], PrimeQ[#] &], 2] (* _T. D. Noe_, Aug 08 2012 *) %t A215367 IntegerLength[#,2]&/@Select[Fibonacci[Range[1000]],PrimeQ] (* _Harvey P. Dale_, Nov 20 2021 *) %o A215367 (Java) %o A215367 import java.math.BigInteger; %o A215367 public class A215367 { %o A215367 public static void main (String[] args) { %o A215367 BigInteger prpr = BigInteger.valueOf(0); %o A215367 BigInteger prev = BigInteger.valueOf(1), curr; %o A215367 int indices[] = { %o A215367 // === insert terms of A001605 here, followed by a comma === // %o A215367 -1 }; %o A215367 int ipos = 1, ind = indices[0]; %o A215367 for (long k=1; ; ++k) { %o A215367 if (k==ind) { %o A215367 System.out.printf("%d, ",prev.bitLength()); %o A215367 ind = indices[ipos++]; %o A215367 if (ind<0) break; %o A215367 } %o A215367 curr = prpr.add(prev); %o A215367 prpr = prev; %o A215367 prev = curr; %o A215367 } %o A215367 } %o A215367 } %Y A215367 Cf. A005478, A020909. %K A215367 nonn,base %O A215367 1,1 %A A215367 _Alex Ratushnyak_, Aug 08 2012