This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215415 #19 Oct 19 2015 05:00:12 %S A215415 0,-1,1,3,2,1,3,5,4,3,5,7,6,5,7,9,8,7,9,11,10,9,11,13,12,11,13,15,14, %T A215415 13,15,17,16,15,17,19,18,17,19,21,20,19,21,23,22,21,23,25,24,23,25,27, %U A215415 26,25,27,29,28,27,29,31,30,29,31,33,32,31,33,35,34,33,35,37 %N A215415 a(2*n) = n, a(4*n+1) = 2*n-1, a(4*n+3) = 2*n+3. %C A215415 a(n) and higher order differences in further rows: %C A215415 0, -1, 1, 3, 2, 1, %C A215415 -1, 2, 2, -1, -1, -2, A134430(n). %C A215415 3, 0, -3, 0, 3, 0, %C A215415 -3, -3, 3, 3, -3, -3, %C A215415 0, 6, 0, -6, 0, 6, %C A215415 6, -6, -6, 6, 6, -6. %C A215415 a(n) is the binomial transform of 0, -1, 3, -3, 0, 6, -12, 12, 0, -24, 48, -48, 0, 96..., essentially negated A134813. %C A215415 By definition, all differences a(n+k)-a(n) are periodic sequences with period length 4. For k=1, 3 and 4 these are A134430, A021307 and A007395, for example. %H A215415 Colin Barker, <a href="/A215415/b215415.txt">Table of n, a(n) for n = 0..1000</a> %H A215415 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-1). %F A215415 a(2*n) = n, a(2*n+1) = A097062(n+1). %F A215415 a(n) = (A214297(n+1) - A214297(n-1))/2. %F A215415 a(3*n) =3*A004525(n). %F A215415 a(n) = +2*a(n-1) -2*a(n-2) +2*a(n-3) -a(n-4). %F A215415 G.f. -x*(1-3*x+x^2) / ( (x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Aug 11 2012 %F A215415 a(n) = ((-3*I)*((-I)^n-I^n)+2*n)/4. - _Colin Barker_, Oct 19 2015 %t A215415 Flatten[Table[{2n, 2n - 1, 2n + 1, 2n + 3}, {n, 0, 19}]] (* _Alonso del Arte_, Aug 09 2012 *) %o A215415 (PARI) a(n) = ((-3*I)*((-I)^n-I^n)+2*n)/4 \\ _Colin Barker_, Oct 19 2015 %o A215415 (PARI) concat(0, Vec(-x*(1-3*x+x^2)/((x^2+1)*(x-1)^2) + O(x^100))) \\ _Colin Barker_, Oct 19 2015 %Y A215415 Quadrisections: A005843, A060747, A005408, A144396. %K A215415 sign,easy,less %O A215415 0,4 %A A215415 _Paul Curtz_, Aug 09 2012