A215419 Primes that remain prime when a single digit 3 is inserted between any two consecutive digits or as the leading or trailing digit.
7, 11, 17, 31, 37, 73, 271, 331, 359, 373, 673, 733, 1033, 2297, 3119, 3461, 3923, 5323, 5381, 5419, 6073, 6353, 9103, 9887, 18289, 23549, 25349, 31333, 32933, 33349, 35747, 37339, 37361, 37489, 47533, 84299, 92333, 93241, 95093, 98491, 133733, 136333, 139333
Offset: 1
Examples
18289 is prime and also 182893, 182839, 182389, 183289, 138289, 318289.
Links
- Robert Israel, Table of n, a(n) for n = 1..150
Programs
-
Maple
filter:= proc(n) local L,d,k,M; if not isprime(n) then return false fi; L:= convert(n,base,10); d:= nops(L); for k from 0 to d do M:= [seq(L[i],i=1..k),3,seq(L[i],i=k+1..d)]; if not isprime(add(M[i]*10^(i-1),i=1..d+1)) then return false fi; od; true end proc; select(filter, [seq(i,i=3..2*10^5,2)]); # Robert Israel, Oct 09 2017
-
Mathematica
ins@n_:=Insert[IntegerDigits@n,3,#]&/@Range@(IntegerLength@n+1); Cases[{#,FromDigits@#&/@ins@#}&/@ Cases[Range[11,70000],?PrimeQ], {,{?PrimeQ..}}][[All,1]] (* _Hans Rudolf Widmer, Dec 21 2023 *)