This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215422 #21 May 12 2023 15:33:30 %S A215422 1,1,2,5,10,22,44,88,177,355,710,1421,2843,5687,11374,22748,45497, %T A215422 90995,181991,363982,727965,1455930,2911861,5823723,11647446,23294892, %U A215422 46589786,93179572,186359144,372718289 %N A215422 Length of binary representation of Fibonacci(2^n). %C A215422 a(n+1)/a(n)->2 as n->infinity. %F A215422 a(n) = A070939(A000045(A000079(n))). %F A215422 a(n) = 2^n * log_2 phi + O(1). - _Charles R Greathouse IV_, Jun 05 2013 %t A215422 IntegerLength[Fibonacci[2^Range[0,30]],2] (* _Harvey P. Dale_, Apr 10 2019 *) %o A215422 (Python) %o A215422 TOP = 33 %o A215422 fib2m1 = [0]*TOP # Fibonacci(2^n-1) %o A215422 fib2 = [1]*TOP # Fibonacci(2^n) %o A215422 print(1, end=',') %o A215422 for n in range(1,TOP): %o A215422 fib2[n] = (2*fib2m1[n-1] + fib2[n-1])*fib2[n-1] %o A215422 fib2m1[n] = fib2m1[n-1]*fib2m1[n-1] + fib2[n-1]*fib2[n-1] %o A215422 print(len(bin(fib2[n]))-2, end=',') %o A215422 (PARI) a(n) = #binary(fibonacci(2^n)) \\ _Michel Marcus_, Jun 05 2013 %Y A215422 Cf. A000045, A000079, A020909, A070939, A215367. %K A215422 nonn,base %O A215422 0,3 %A A215422 _Alex Ratushnyak_, Aug 10 2012