This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215454 #15 Aug 01 2025 19:01:22 %S A215454 1,4,6,6,10,6,14,8,9,10,22,6,26,14,10,10,34,9,38,10,14,22,46,8,20,26, %T A215454 15,14,58,10,62,12,22,34,14,9,74,38,26,10,82,14,86,22,10,46,94,10,28, %U A215454 20,34,26,106,15,22,14,38,58,118,10,122,62,14,16,26,22,134,34 %N A215454 a(n) = least positive k such that n^2 divides k! %C A215454 Indices n such that a(n)=n: 1 followed by A074845. %e A215454 a(12): least positive k such that 144 divides k! is k=6, 6!=720. So a(12)=6. %t A215454 Module[{nn=200,f},f=Range[nn]!;Position[f,#]&/@Table[SelectFirst[ f, Divisible[ #,n^2]&],{n,nn}]]//Flatten (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 11 2018 *) %o A215454 (Python) %o A215454 TOP = 77 %o A215454 ii = [0]*TOP %o A215454 for i in range(1, TOP): %o A215454 ii[i] = i*i %o A215454 f = k = y = 1 %o A215454 res = [-1]*TOP %o A215454 while y<TOP: %o A215454 for i in range(1, TOP): %o A215454 if res[i]<0 and f % ii[i] == 0: %o A215454 res[i] = k %o A215454 y += 1 %o A215454 k += 1 %o A215454 f *= k %o A215454 for i in range(1, TOP): %o A215454 print(res[i], end=', ') %Y A215454 Cf. A002034 (least k such that n divides k!). %Y A215454 Cf. A085779 (least k such that triangular(n) divides k!). %Y A215454 Cf. A093896 (least positive k such that n^n divides k!). %K A215454 nonn %O A215454 1,2 %A A215454 _Alex Ratushnyak_, Aug 11 2012