cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215461 Number of decompositions of 2n into ordered sums of one prime and one nonprime.

This page as a plain text file.
%I A215461 #11 Jul 16 2015 22:19:41
%S A215461 0,0,2,2,2,0,4,4,2,4,6,4,4,6,8,6,12,6,4,16,10,8,14,12,8,12,16,10,18,
%T A215461 16,8,24,14,10,28,16,14,22,20,12,26,24,12,26,28,10,30,28,18,36,24,18,
%U A215461 32,30,22,32,28,18,34,36,10,44,38,18,48,32,26,40,42,32,38,36,22,44
%N A215461 Number of decompositions of 2n into ordered sums of one prime and one nonprime.
%C A215461 A002372(n) + a(n) + A215462(n) = n.
%C A215461 Note: a(n) always even.
%C A215461 Conjecture: a(n) is never zero for n > 5, verified to 10^9.
%C A215461 Goldbach conjecture: a(n) + A215462(n) < n for all n > 2.
%F A215461 a(n) = convolve(p,c) + convolve(c,p) = 2*convolve(p,c) where p(n) = 1 if 2n+1 is prime and 0 otherwise, and c(n) = 1 if 2n+1 is nonprime and 0 otherwise.
%e A215461 n=15, 2*n=30, 2*n = { 3+27, 5+25, 29+1;  1+29, 25+5, 27+3 }, a(15) = 6
%e A215461 n=18, 2*n=36, 2*n = { 3+33, 11+25;  11+25, 33+3 }, a(18) = 4
%Y A215461 Cf. A002372, A215462.
%K A215461 nonn
%O A215461 0,3
%A A215461 _Peter A. Lawrence_, Aug 11 2012