This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215470 #18 May 23 2025 18:22:02 %S A215470 71,353,701,1151,1451,3347,4691,13463,21017,27947,34337,42017,52253, %T A215470 57191,79907,80831,81611,121469,144497,159737,161141,256301,265547, %U A215470 284231,285707,312161,334511,346559,348617,382601,392069,422867,440303,502013,541061,545873,593207 %N A215470 Prime intersections in a square spiral with positive integers: primes p such that there are four primes among eight nearest neighbors of p. %C A215470 Conjecture: the sequence is infinite. - _Alex Ratushnyak_, Sep 19 2012 %e A215470 The spiral begins: %e A215470 . %e A215470 121 82--83--84--85--86--87--88--89--90--91 %e A215470 | | | %e A215470 120 81 50--51--52--53--54--55--56--57 92 %e A215470 | | | | | %e A215470 119 80 49 26--27--28--29--30--31 58 93 %e A215470 | | | | | | | %e A215470 118 79 48 25 10--11--12--13 32 59 94 %e A215470 | | | | | | | | | %e A215470 117 78 47 24 9 2---3 14 33 60 95 %e A215470 | | | | | | | | | | | %e A215470 116 77 46 23 8 1 4 15 34 61 96 %e A215470 | | | | | | | | | | %e A215470 115 76 45 22 7---6---5 16 35 62 97 %e A215470 | | | | | | | | %e A215470 114 75 44 21--20--19--18--17 36 63 98 %e A215470 | | | | | | %e A215470 113 74 43--42--41--40--39--38--37 64 99 %e A215470 | | | | %e A215470 112 73--72--71--70--69--68--67--66--65 100 %e A215470 | | %e A215470 111-110-109-108-107-106-105-104-103-102-101 %e A215470 . %e A215470 Among eight nearest neighbors of 71 four are primes: 41, 43, 107, 109. %o A215470 (Python) %o A215470 SIZE = 3335 # must be odd %o A215470 TOP = SIZE*SIZE %o A215470 prime = [1]*TOP %o A215470 prime[1]=0 %o A215470 for i in range(4,TOP,2): %o A215470 prime[i]=0 %o A215470 for i in range(3,TOP,2): %o A215470 if prime[i]==1: %o A215470 for j in range(i*3,TOP,i*2): %o A215470 prime[j]=0 %o A215470 grid = [0] * TOP %o A215470 posX = posY = SIZE//2 %o A215470 grid[posY*SIZE+posX] = 1 %o A215470 n = 2 %o A215470 saveX = [0]* (TOP+1) %o A215470 saveY = [0]* (TOP+1) %o A215470 saveX[1]=posX %o A215470 saveY[1]=posY %o A215470 def walk(stepX, stepY, chkX, chkY): %o A215470 global posX, posY, n %o A215470 while 1: %o A215470 posX+=stepX %o A215470 posY+=stepY %o A215470 grid[posY*SIZE+posX]=n %o A215470 saveX[n]=posX %o A215470 saveY[n]=posY %o A215470 n+=1 %o A215470 if posX*posY==0 or grid[(posY+chkY)*SIZE+posX+chkX]==0: %o A215470 return %o A215470 while 1: %o A215470 walk(0, -1, 1, 0) # up %o A215470 if posX*posY==0: %o A215470 break %o A215470 walk(1, 0, 0, 1) # right %o A215470 walk(0, 1, -1, 0) # down %o A215470 walk(-1, 0, 0, -1) # left %o A215470 for s in range(1, n): %o A215470 if prime[s]: %o A215470 posX = saveX[s] %o A215470 posY = saveY[s] %o A215470 a,b=(grid[(posY-1)*SIZE+posX-1]) , (grid[(posY-1)*SIZE+posX+1]) %o A215470 c,d=(grid[(posY+1)*SIZE+posX-1]) , (grid[(posY+1)*SIZE+posX+1]) %o A215470 if a*b==0 or c*d==0: %o A215470 break %o A215470 if prime[a]+prime[b]+prime[c]+prime[d]==4: %o A215470 print(s, end=', ') %Y A215470 Cf. A137928, A137930, A137931, A114254, A214176, A214177, A215471. %K A215470 nonn %O A215470 1,1 %A A215470 _Alex Ratushnyak_, Aug 11 2012