A215488 a(0)=1, a(n) = a(n-1) + a(2*n AND n), where AND is the bitwise AND operator.
1, 2, 3, 6, 7, 8, 15, 30, 31, 32, 33, 36, 67, 98, 165, 330, 331, 332, 333, 336, 337, 338, 345, 360, 691, 1022, 1353, 1686, 2377, 3068, 5445, 10890, 10891, 10892, 10893, 10896, 10897, 10898, 10905, 10920, 10921, 10922, 10923, 10926, 10957, 10988, 11055, 11220, 22111, 33002
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A213370.
Programs
-
Maple
f:= proc(n) option remember; procname(n-1) + procname(Bits:-And(2*n,n)) end proc: f(0):= 1: seq(f(i),i=0..100); # Robert Israel, Dec 29 2016
-
Mathematica
A215488[n_] := A215488[n] = If[n == 0, 1, A215488[n-1] + A215488[BitAnd[2*n, n]]]; Array[A215488, 50, 0] (* Paolo Xausa, Aug 06 2025 *)
-
Python
a = [1]*1000 for n in range(1,777): print(a[n-1], end=', ') a[n]= a[n-1] + a[2*n & n]