cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215522 n-th derivative of (x^x)^(x^x) at x=1.

This page as a plain text file.
%I A215522 #33 Feb 07 2021 11:29:54
%S A215522 1,1,4,18,100,650,4908,41090,382520,3863808,42409440,497972112,
%T A215522 6259762320,83343114504,1175904241848,17442325040520,272149555445760,
%U A215522 4438451554802880,75714874759039104,1343817666163911168,24837691533530152320,475811860099666527360
%N A215522 n-th derivative of (x^x)^(x^x) at x=1.
%C A215522 Also n-th derivative of (x^(x^x))^x = x^(x^x*x) at x=1.
%C A215522 First term < 0: a(65).
%H A215522 Alois P. Heinz, <a href="/A215522/b215522.txt">Table of n, a(n) for n = 0..400</a>
%F A215522 E.g.f.: (x+1)^((x+1)^(x+2)).
%p A215522 a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^(x^x) ), x, n+1), x, n):
%p A215522 seq(a(n), n=0..30);
%t A215522 m = 21; CoefficientList[(x+1)^((x+1)^(x+2)) + O[x]^(m+1), x]*Range[0, m]! (* _Jean-François Alcover_, Feb 07 2021 *)
%Y A215522 Column k=6 of A215703.
%Y A215522 Cf. A005727, A179230, A179405, A215524.
%K A215522 sign
%O A215522 0,3
%A A215522 _Alois P. Heinz_, Aug 14 2012