This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215537 #10 Aug 11 2015 01:13:01 %S A215537 25,17,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, %T A215537 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55, %U A215537 56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 %N A215537 Lowest k such that k is representable as both the sum of n and of n+1 nonzero squares. %e A215537 25 = 5^2 = 3^2 + 4^2 %e A215537 17 = 4^2 + 1^2 = 3^2 + 2^2 + 2^2 %e A215537 12 = 2^2 + 2^2 + 2^2 = 3^2 + 1^2 + 1^2 + 1^2 %e A215537 after this just add 1^2 to both sides. %p A215537 # true if a is representable as a sum of n squares, each square >= m^2. %p A215537 isRepnSqrsMin := proc(a,n,m) %p A215537 local mpr ; %p A215537 if a < n*m^2 then %p A215537 return false; %p A215537 end if; %p A215537 if n = 1 then %p A215537 if a>= m^2 and issqr(a) then %p A215537 true; %p A215537 else %p A215537 false; %p A215537 end if; %p A215537 else %p A215537 for mpr from m to a do %p A215537 if a-mpr^2 < 1 then %p A215537 return false; %p A215537 elif procname(a-mpr^2,n-1,mpr) then %p A215537 return true; %p A215537 end if; %p A215537 end do: %p A215537 end if; %p A215537 end proc: %p A215537 # true if a is representable as a sum of n positive squares. %p A215537 isRepnSqrs := proc(a,n) %p A215537 isRepnSqrsMin(a,n,1) ; %p A215537 end proc: %p A215537 A215537 := proc(n) %p A215537 local k; %p A215537 for k from 1 do %p A215537 if isRepnSqrs(k,n) and isRepnSqrs(k,n+1) then %p A215537 return k; %p A215537 end if; %p A215537 end do: %p A215537 end proc: # _R. J. Mathar_, Sep 11 2012 %Y A215537 Cf. A000290 (representable as sum of 1 square), A000404 (sum of 2 positive squares), A000408 (sum of 3 positive squares), A000414 (sum of 4 positive squares), A047700 (sum of 5 positive squares) %K A215537 nonn %O A215537 1,1 %A A215537 _Jon Perry_, Aug 15 2012