This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215542 #19 Aug 29 2025 03:55:32 %S A215542 1,5,54,663,8602,115101,1570800,21732542,303719922,4277470470, %T A215542 60610884906,863102246760,12340998865104,177064708142315, %U A215542 2547927647834040,36757054103054076,531436857842656610,7698470087956704210,111712846834848074340,1623556455926349703605 %N A215542 a(n) = binomial(6*n,n)*(4*n+1)/(5*n+1). %C A215542 Number of standard Young tableaux of shape [5n,n]. %H A215542 Alois P. Heinz, <a href="/A215542/b215542.txt">Table of n, a(n) for n = 0..260</a> %H A215542 Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>. %F A215542 a(n) = C(6*n,n)*(4*n+1)/(5*n+1). %F A215542 a(n) = [x^n] ((1 - sqrt(1 - 4*x))/(2*x))^(4*n+1). - _Ilya Gutkovskiy_, Nov 01 2017 %F A215542 Recurrence: 5*n*(4*n - 3)*(5*n - 3)*(5*n - 2)*(5*n - 1)*(5*n + 1)*a(n) = 72*(2*n - 1)*(3*n - 2)*(3*n - 1)*(4*n + 1)*(6*n - 5)*(6*n - 1)*a(n-1). - _Vaclav Kotesovec_, Feb 03 2018 %F A215542 a(n) ~ 3^(6*n+1/2) * 4^(3*n+1) / (5^(5*n+3/2) * sqrt(Pi*n)). - _Amiram Eldar_, Aug 29 2025 %p A215542 a:= n-> binomial(6*n,n)*(4*n+1)/(5*n+1): %p A215542 seq(a(n), n=0..20); %t A215542 Table[Binomial[6n,n] (4n+1)/(5n+1),{n,0,30}] (* _Harvey P. Dale_, Mar 06 2014 *) %Y A215542 Column k=5 of A214776. %K A215542 nonn,changed %O A215542 0,2 %A A215542 _Alois P. Heinz_, Aug 15 2012