This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215582 #24 Jun 04 2013 17:58:23 %S A215582 1,3,35,1275,154115,71994363,140595475715,1133624776334235, %T A215582 36970581556591250435,4838797912961323412254203, %U A215582 2535793883977350841761956006915,5317221866238397002010248863448839835,44602260230569982664472646479956459441496835,1496585236610867406252010206465708857876795888774523 %N A215582 The number of proper mergings of two n-antichains. %C A215582 The number of proper mergings of an n-antichain and an m-antichain can be computed with the following formula: a(m,n)=Sum_{i+j+k=m} m!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n. %H A215582 Vincenzo Librandi, <a href="/A215582/b215582.txt">Table of n, a(n) for n = 0..50</a> %H A215582 H. Mühle, <a href="http://arxiv.org/abs/1206.3922">Counting Proper Mergings of Chains and Antichains</a>, arXiv:1206.3922. %F A215582 a(n)=Sum_{i+j+k=n}{n!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n}. %F A215582 limit n->infinity a(n)/(2^(n^2))=2 [From _Vaclav Kotesovec_, Aug 23 2012] %e A215582 For n=1, the a(1)=3 proper mergings of two 1-antichains ({a},{}) and ({b},{}) are the following three posets: ({a,b},{}), ({a,b},{(a,b)}), ({a,b},{(b,a)}). %t A215582 Table[Sum[Sum[Sum[If[i+j+k==n,n!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n,0],{i,0,n}],{j,0,n}],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Aug 23 2012 *) %K A215582 easy,nonn %O A215582 0,2 %A A215582 _Henri Mühle_, Aug 21 2012