This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215616 #8 Aug 18 2012 14:09:46 %S A215616 1,5,0,765,41261,0,1175731456,804611664045,0,4133434158867578125, %T A215616 36792671310208420147421,0,33666995638445382179718361163901, %U A215616 3930778415673723952392425569428439040,0,637350736211692642266912139961455499346709367565 %N A215616 From Wendt's determinant compute (-A048954(2*n)/3)^(1/3). %C A215616 It is known that 3 divides A048954(2*n). It is conjectured that the quotient is a perfect cube. %C A215616 See A048954 for additional comments, references, links, and cross-references. %H A215616 Gerard P. Michon, <a href="http://www.numericana.com/data/wendt.htm">Factorization of Wendt's Determinant</a>(see Remarks and Conjectures). %F A215616 a(n) = (-A048954(2*n)/3)^(1/3). %F A215616 a(n) = 0 if and only if n is divisible by 3. %t A215616 w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[(-w[2 n]/3)^(1/3), {n, 19}] %Y A215616 Cf. A048954, A215615. %K A215616 nonn %O A215616 1,2 %A A215616 _Jonathan Sondow_, Aug 17 2012