This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215634 #29 Sep 08 2022 08:46:03 %S A215634 3,-6,18,-63,234,-891,3429,-13257,51354,-199098,772173,-2995218, %T A215634 11619045,-45073827,174857211,-678335958,2631522330,-10208681991, %U A215634 39603398850,-153636822171,596016389349,-2312177133105,8969825761002 %N A215634 a(n) = - 6*a(n-1) - 9*a(n-2) - 3*a(n-3) with a(0)=3, a(1)=-6, a(2)=18. %C A215634 The Berndt-type sequence number 2 for the argument 2Pi/9 . Similarly like the respective sequence number 1 -- see A215455 -- the sequence a(n) is connected with the following general recurrence relation: X(n+3) + 6*X(n+2) + 9*X(n+1) + ((2*cos(3*g))^2)*X(n) = 0, X(0)=3, X(1)=-6, X(2)=18. The Binet formula for this one has the form: X(n) = (-4)^n*((cos(g))^(2*n) + cos(g+Pi/3))^(2*n) + cos(g-Pi/3))^(2*n)) - for details see Witula-Slota's reference and comments to A215455. %C A215634 The characteristic polynomial of a(n) has the form x^3 + 6*x^2 + 9*x + 3 = (x + (2*cos(Pi/18))^2)*(x+(2*cos(5*Pi/18))^2)*(x+(2*cos(7*Pi/18))^2). We note that (2*cos(Pi/18))^2 = 2 - c(4), (2*cos(5*Pi/18))^2 = 2 - c(2), and (2*cos(7*Pi/18))^2 = 2 - c(1), where c(j) = 2*cos(2*Pi*j/9) - see trigonometric relations for A215455. Furthermore all numbers a(n)*3^(-ceiling((n+1)/3)) are integers. %D A215634 R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish). %H A215634 Vincenzo Librandi, <a href="/A215634/b215634.txt">Table of n, a(n) for n = 0..1000</a> %H A215634 R. Witula, D. Slota, <a href="https://doi.org/10.1016/j.jmaa.2005.12.020">On modified Chebyshev polynomials</a>, J. Math. Anal. Appl., 324 (2006), 321-343. %H A215634 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-6,-9,-3). %F A215634 a(n) = (-4)^n*((cos(Pi/18))^(2*n) + (cos(5*Pi/18))^(2*n) + (cos(7*Pi/18))^(2*n)). %F A215634 G.f.: (3 + 12*x + 9*x^2)/(1 + 6*x + 9*x^2 + 3*x^3). %F A215634 a(n)*(-1)^n = s(1)^(2*n) + s(2)^(2*n) + s(4)^(2*n), where s(j) := 2*sin(2*Pi*j/9) -- for the proof see Witula's book. The respective sums with odd powers of sines in A216757 are given. - _Roman Witula_, Sep 15 2012 %t A215634 LinearRecurrence[{-6,-9,-3}, {3,-6,18}, 50] %t A215634 CoefficientList[Series[(3 + 12 x + 9 x^2)/(1 + 6 x + 9 x^2 + 3 x^3), {x, 0, 33}], x] (* _Vincenzo Librandi_, Aug 30 2017 *) %o A215634 (PARI) Vec((3+12*x+9*x^2)/(1+6*x+9*x^2+3*x^3)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012 %o A215634 (Magma) I:=[3,-6,18]; [n le 3 select I[n] else -6*Self(n-1)-9*Self(n-2)-3*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Aug 30 2017 %Y A215634 Cf. A215455, A215635, A215636, A215664, A215885, A215665, A215666, A215829, A215831, A215917, A215919, A215945, A216034, A215948, A216757. %K A215634 sign,easy %O A215634 0,1 %A A215634 _Roman Witula_, Aug 18 2012