This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215642 #20 Aug 20 2012 13:49:46 %S A215642 2,3,5,7,11,13,19,23,31,37,41,43,47,53,59,61,73,79,83,103,107,109,113, %T A215642 127,137,139,149,151,157,179,181,199,223,227,229,239,251,271,277,281, %U A215642 293,311,331,349,353,359,367,379,383,389,397,401,409,421,431,439,487,499,541 %N A215642 Primes p such that there is no D such that p+D, p-D, p+2*D, p-2*D are all primes. %C A215642 Conjecture: a(243)=34613 is the last term. %H A215642 Joerg Arndt, <a href="/A215642/b215642.txt">Table of n, a(n) for n = 1..243</a> %e A215642 17 doesn't occur in the sequence, because there is D=6: 17-12, 17-6, 17+6 and 17+12 are all primes: 5, 11, 23, 29. %t A215642 fQ[p_] := Module[{d = 1}, While[4d < p && !(PrimeQ[p-4d] && PrimeQ[p-2d] && PrimeQ[p+2d] && PrimeQ[p+4d]), d++]; 4d > p]; Select[Prime[Range[4000]], fQ] (* _T. D. Noe_, Aug 20 2012 *) %o A215642 (PARI) %o A215642 N=10^9; %o A215642 default(primelimit,N); %o A215642 print1(2,", "); %o A215642 { forprime (p=3, N, %o A215642 D=2; D2 = D << 1; %o A215642 t = 1; %o A215642 while ( p > D2, %o A215642 if ( isprime(p+D) & isprime(p-D) & %o A215642 isprime(p+D2) & isprime(p-D2) %o A215642 , /* then */ %o A215642 t=0; break() %o A215642 ); %o A215642 D += 2; D2 += 4; %o A215642 ); %o A215642 if ( t==1, print1(p,", ") ); %o A215642 ); } %o A215642 /* _Joerg Arndt_, Aug 20 2012 */ %Y A215642 Cf. A078611. %K A215642 nonn %O A215642 1,1 %A A215642 _Alex Ratushnyak_, Aug 18 2012