cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215651 Number of transformation semigroups acting on n points (counting conjugates as one), i.e., the number of subsemigroups of the full transformation semigroup T_n.

Original entry on oeis.org

1, 2, 8, 283, 132069776
Offset: 0

Views

Author

Attila Egri-Nagy, Aug 19 2012

Keywords

Comments

The semigroup analog of A000638.
We apply the categorical viewpoint and consider the empty set as a semigroup.

Crossrefs

Programs

  • GAP
    ################################################################################
    # GAP 4.5 function calculating the conjugacy classes of a set of subsemigrops.
    # (C) 2012 Attila Egri-Nagy www.egri-nagy.hu
    # GAP can be obtained from www.gap-system.org
    ################################################################################
    # Input: list of subsemigroups of a transformation semigroup,
    #        automorphism group of the semigroup
    # Output: list of conjugacy classes
    ConjugacyClassesSubsemigroups := function(subsemigroups, G)
    local ssg, #subsemigroup
          ccl, #conjugacy class
          ccls; #result: all conjugacy classes
      ccls := [];
      for ssg in subsemigroups do
        #we check whether the subsemigroup is already in a conjugacy class
        if not ForAny(ccls, x -> ssg in x) then
          #conjugating by all group elements
          ccl := DuplicateFreeList(
                         List(G,
                              g -> AsSortedList(List(ssg, t-> t^g))));
          Add(ccls, ccl);
        fi;
      od;
      return ccls;
    end;

Extensions

a(4) moved from a comment by Attila Egri-Nagy, Jan 09 2014 to data by Andrey Zabolotskiy, Mar 25 2021