A215651 Number of transformation semigroups acting on n points (counting conjugates as one), i.e., the number of subsemigroups of the full transformation semigroup T_n.
1, 2, 8, 283, 132069776
Offset: 0
Links
- James East, Attila Egri-Nagy, James D. Mitchell, Enumerating Transformation Semigroups, Semigroup Forum 95, 109-125 (2017); arXiv: 1403.0274 [math.GR], 2014-2017.
Programs
-
GAP
################################################################################ # GAP 4.5 function calculating the conjugacy classes of a set of subsemigrops. # (C) 2012 Attila Egri-Nagy www.egri-nagy.hu # GAP can be obtained from www.gap-system.org ################################################################################ # Input: list of subsemigroups of a transformation semigroup, # automorphism group of the semigroup # Output: list of conjugacy classes ConjugacyClassesSubsemigroups := function(subsemigroups, G) local ssg, #subsemigroup ccl, #conjugacy class ccls; #result: all conjugacy classes ccls := []; for ssg in subsemigroups do #we check whether the subsemigroup is already in a conjugacy class if not ForAny(ccls, x -> ssg in x) then #conjugating by all group elements ccl := DuplicateFreeList( List(G, g -> AsSortedList(List(ssg, t-> t^g)))); Add(ccls, ccl); fi; od; return ccls; end;
Extensions
a(4) moved from a comment by Attila Egri-Nagy, Jan 09 2014 to data by Andrey Zabolotskiy, Mar 25 2021
Comments