cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215657 Solution S of (2*u)^2 = R^2 - p*S^2, where p is the n-th prime of the form 4k+1.

This page as a plain text file.
%I A215657 #8 Feb 18 2017 13:02:21
%S A215657 65,5691884464123,2171769991015128035203320,
%T A215657 1634465653492219202324217583600006782459921190308836446038375668451525
%N A215657 Solution S of (2*u)^2 = R^2 - p*S^2, where p is the n-th prime of the form 4k+1.
%C A215657 p = A002144(n), u = A215615(p), and R = A215656(n).
%C A215657 A215615 is computed from Wendt's circulant determinant A048954.
%C A215657 Brown and Chamberland (2012, p. 600) give explicit formulas for u, R, S.
%H A215657 Ezra Brown and Marc Chamberland, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.119.07.597">Generalizing Gauss's gem</a>, Amer. Math. Monthly, 119 (Aug. 2012), 597-601.
%F A215657 a(n) = sqrt((R^2 - 4*u^2)/p) with R = A215656(n), p = A002144(n), u = A215615(p).
%e A215657 2*A215615(5) = 2*11 = 22 and 22^2  = 147^2 - 5*65^2, so a(1) = 65.
%Y A215657 Cf. A002144, A048954, A215615, A215656.
%K A215657 nonn
%O A215657 1,1
%A A215657 _Jonathan Sondow_, Aug 20 2012