A215659 Values of k such that k*(k - 1) is a primorial number.
2, 3, 6, 15, 715
Offset: 1
Links
- Carol Nelson, David E. Penney and Carl Pomerance, 714 and 715, J. Recreational Math. 7:2 (1994), pp. 87-89.
Programs
-
Mathematica
Select[Range[10^5], Product[Prime@ i, {i, PrimeNu@ #}] == # &[# (# - 1)] &] (* Michael De Vlieger, Apr 10 2018 *)
-
Python
from sympy import primorial, integer_nthroot A215659_list = [] for i in range(1,10**2): a, b = integer_nthroot(4*primorial(i)+1,2) if b: A215659_list.append((a+1)//2) # Chai Wah Wu, Apr 01 2021
Formula
a(n) * (a(n) - 1) = A215658(n)#, where p# = 2 * 3 * 5 * 7 * 11 * ... * p is a primorial, the product of the primes from 2 to p.
Extensions
Name improved by Jeppe Stig Nielsen, Mar 27 2018
Comments