This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215703 #67 Nov 08 2019 05:57:59 %S A215703 1,1,1,1,1,0,1,1,2,0,1,1,4,3,0,1,1,2,12,8,0,1,1,6,9,52,10,0,1,1,4,27, %T A215703 32,240,54,0,1,1,2,18,156,180,1188,-42,0,1,1,2,15,100,1110,954,6804, %U A215703 944,0,1,1,8,9,80,650,8322,6524,38960,-5112,0,1,1,6,48,56,590,4908,70098,45016,253296,47160,0 %N A215703 A(n,k) is the n-th derivative of f_k at x=1, and f_k is the k-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways; square array A(n,k), n>=0, k>=1, read by antidiagonals. %C A215703 A000081(m) distinct functions are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways. Some functions are representable in more than one way, the number of valid parenthesizations is A000108(m-1). The f_k are ordered, such that the number m of x's in f_k is a nondecreasing function of k. The exact ordering is defined by the algorithm below. %C A215703 The list of functions f_1, f_2, ... begins: %C A215703 | f_k : m : function (tree) : representation(s) : sequence | %C A215703 +-----+---+------------------+--------------------------+----------+ %C A215703 | f_1 | 1 | x -> x | x | A019590 | %C A215703 | f_2 | 2 | x -> x^x | x^x | A005727 | %C A215703 | f_3 | 3 | x -> x^(x*x) | (x^x)^x | A215524 | %C A215703 | f_4 | 3 | x -> x^(x^x) | x^(x^x) | A179230 | %C A215703 | f_5 | 4 | x -> x^(x*x*x) | ((x^x)^x)^x | A215704 | %C A215703 | f_6 | 4 | x -> x^(x^x*x) | (x^x)^(x^x), (x^(x^x))^x | A215522 | %C A215703 | f_7 | 4 | x -> x^(x^(x*x)) | x^((x^x)^x) | A215705 | %C A215703 | f_8 | 4 | x -> x^(x^(x^x)) | x^(x^(x^x)) | A179405 | %H A215703 Alois P. Heinz, <a href="/A215703/b215703.txt">Antidiagonals n = 0..140, flattened</a> %e A215703 Square array A(n,k) begins: %e A215703 1, 1, 1, 1, 1, 1, 1, 1, ... %e A215703 1, 1, 1, 1, 1, 1, 1, 1, ... %e A215703 0, 2, 4, 2, 6, 4, 2, 2, ... %e A215703 0, 3, 12, 9, 27, 18, 15, 9, ... %e A215703 0, 8, 52, 32, 156, 100, 80, 56, ... %e A215703 0, 10, 240, 180, 1110, 650, 590, 360, ... %e A215703 0, 54, 1188, 954, 8322, 4908, 5034, 2934, ... %e A215703 0, -42, 6804, 6524, 70098, 41090, 47110, 26054, ... %p A215703 T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end: %p A215703 g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq( %p A215703 seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w= %p A215703 combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)]) %p A215703 end: %p A215703 f:= proc() local i, l; i, l:= 0, []; proc(n) while n> %p A215703 nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end %p A215703 end(): %p A215703 A:= (n, k)-> n!*coeff(series(subs(x=x+1, f(k)), x, n+1), x, n): %p A215703 seq(seq(A(n, 1+d-n), n=0..d), d=0..12); %t A215703 T[n_] := If[n == 1, {x}, Map[x^#&, g[n - 1, n - 1]]]; %t A215703 g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten @ Table[ Table[ Table[ Product[T[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {v, g[n - i*j, i - 1]}], {w, Subsets[ Range[ Length[T[i]] + j - 1], {j}]}], {j, 0, n/i}]]; %t A215703 f[n_] := Module[{i = 0, l = {}}, While[n > Length[l], i++; l = Join[l, T[i]]]; l[[n]]]; %t A215703 A[n_, k_] := n! * SeriesCoefficient[f[k] /. x -> x+1, {x, 0, n}]; %t A215703 Table[Table[A[n, 1+d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Nov 08 2019, after _Alois P. Heinz_ *) %Y A215703 Columns k=1-17, 37 give: A019590, A005727, A215524, A179230, A215704, A215522, A215705, A179405, A215706, A215707, A215708, A215709, A215691, A215710, A215643, A215629, A179505, A211205. %Y A215703 Rows n=0+1, 2-10 give: A000012, A215841, A215842, A215834, A215835, A215836, A215837, A215838, A215839, A215840. %Y A215703 Number of distinct values taken for m x's by derivatives n=1-10: A000012, A028310, A199085, A199205, A199296, A199883, A215796, A215971, A216062, A216403. %Y A215703 Main diagonal gives A306739. %Y A215703 Cf. A000081, A000108, A033917, A211192, A214569, A214570, A214571, A216041, A216281, A216349, A216350, A216351, A216368, A222379, A222380, A277537, A306679, A306710, A306726. %K A215703 sign,tabl %O A215703 0,9 %A A215703 _Alois P. Heinz_, Aug 21 2012