A215727 a(n) is the smallest m for which 3^m contains n consecutive identical digits.
0, 11, 32, 33, 274, 538, 2124, 7720, 22791, 107187, 107187, 639226, 5756979, 8885853, 68353787, 78927180, 78927180
Offset: 1
Examples
3^11 = 177147, which has two digits in a row.
Programs
-
Mathematica
A215727[n_] := Module[{m = 0 , t}, t = Table[i, {i, 0, 9}, {n}]; While[True, If[ContainsAny[Subsequences[IntegerDigits[3^m], {n}], t], Return[m], m++]]; m]; Table[A215727[n], {n, 1, 14}] (* Robert Price, Oct 16 2018 *)
-
Python
def A215727(n): l, x = [str(d)*n for d in range(10)], 1 for m in range(10**9): s = str(x) for k in l: if k in s: return m x *= 3 return 'search limit reached' # Chai Wah Wu, Dec 17 2014
Extensions
a(12) from Chai Wah Wu, Dec 17 2014
a(13)-a(14) from Giovanni Resta, Apr 20 2016
a(15) from Bert Dobbelaere, Mar 04 2019
a(16)-a(17) from Bert Dobbelaere, Mar 20 2019
Comments