This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215731 #46 Oct 04 2024 00:24:35 %S A215731 0,1,8,39,156,482,1323,2983,9443,39879,214747,296095,296095,5541239, %T A215731 8621384,30789328 %N A215731 a(n) is the smallest m for which the decimal representation of 11^m contains n consecutive identical digits. %e A215731 The decimal representation of 11^39879 contains ten consecutive 6s, and is the least such power with such a string of digits. %t A215731 mostDigits[t_] := Module[{lastDigit = t[[1]], record = 1, cnt = 1}, Do[If[t[[n]] == lastDigit, cnt++, If[cnt > record, record = cnt]; cnt = 1; lastDigit = t[[n]]], {n, 2, Length[t]}]; If[cnt > record, record = cnt] ; record]; nn = 10; t = Table[-1, {nn}]; n = -1; While[Min[t] == -1, n++; c = mostDigits[IntegerDigits[11^n]]; If[c > nn, c = nn]; While[c > 0 && t[[c]] == -1, t[[c]] = n; c--]]; t (* _T. D. Noe_, Apr 29 2013 *) %o A215731 (Python) %o A215731 def A215731(n): %o A215731 l, x = [str(d)*n for d in range(10)], 1 %o A215731 for m in range(10**9): %o A215731 s = str(x) %o A215731 for k in l: %o A215731 if k in s: %o A215731 return m %o A215731 x *= 11 %o A215731 return 'search limit reached' %o A215731 # _Chai Wah Wu_, Dec 17 2014 %Y A215731 Cf. A215737 (the repeated digits), A045875, A215727, A215728, A215729, A215730. %K A215731 nonn,base,more %O A215731 1,3 %A A215731 _V. Raman_, Aug 22 2012 %E A215731 a(10) discovered by "Wick" (See http://www.mersenneforum.org/showpost.php?p=334789&postcount=89). Definition clarified and all terms to a(10) verified by _Daran Gill_, Mar 24 2013 %E A215731 a(11) discovered by Tom Womack (See http://www.mersenneforum.org/showpost.php?p=337916&postcount=105), _Rick van der Hoorn_, Apr 24 2013 %E A215731 a(12)-a(13) from _Giovanni Resta_, Apr 25 2013 %E A215731 Corrected a(12), _Rick van der Hoorn_, Apr 28 2013 %E A215731 a(14) from _Giovanni Resta_, Apr 18 2016 %E A215731 a(15) from _Bert Dobbelaere_, Feb 15 2019 %E A215731 a(16) from _Paul Geneau de Lamarlière_, Oct 03 2024