This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215771 #38 Mar 23 2020 12:10:46 %S A215771 1,0,1,0,1,1,0,1,3,1,0,3,7,6,1,0,12,25,25,10,1,0,60,127,120,65,15,1,0, %T A215771 360,777,742,420,140,21,1,0,2520,5547,5446,3157,1190,266,28,1,0,20160, %U A215771 45216,45559,27342,10857,2898,462,36,1,0,181440,414144,427275,264925,109935,31899,6300,750,45,1 %N A215771 Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A215771 Also the Bell transform of A001710. For the definition of the Bell transform see A264428 and the links given there. - _Peter Luschny_, Jan 21 2016 %H A215771 Alois P. Heinz, <a href="/A215771/b215771.txt">Rows n = 0..140, flattened</a> %e A215771 T(4,1) = 3: .1-2. .1 2. .1-2. %e A215771 . .| |. .|X|. . X . %e A215771 . .3-4. .3 4. .3-4. %e A215771 . %e A215771 T(4,2) = 7: .1 2. .1-2. .1 2. o1 2. .1 2o .1-2. .1-2. %e A215771 . .| |. . . . X . . /|. .|\ . . \|. .|/ . %e A215771 . .3 4. .3-4. .3 4. .3-4. .3-4. o3 4. .3 4o %e A215771 . %e A215771 T(4,3) = 6: .1 2o .1-2. o1 2. o1 2o o1 2. .1 2o %e A215771 . .| . . . . |. . . . / . . \ . %e A215771 . .3 4o o3 4o o3 4. .3-4. .3 4o o3 4. %e A215771 . %e A215771 T(4,4) = 1: o1 2o %e A215771 . . . %e A215771 . o3 4o %e A215771 Triangle T(n,k) begins: %e A215771 1; %e A215771 0, 1; %e A215771 0, 1, 1; %e A215771 0, 1, 3, 1; %e A215771 0, 3, 7, 6, 1; %e A215771 0, 12, 25, 25, 10, 1; %e A215771 0, 60, 127, 120, 65, 15, 1; %e A215771 0, 360, 777, 742, 420, 140, 21, 1; %p A215771 T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, %p A215771 add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k))) %p A215771 end: %p A215771 seq(seq(T(n, k), k=0..n), n=0..12); %p A215771 # Alternatively, with the function BellMatrix defined in A264428: %p A215771 BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # _Peter Luschny_, Jan 21 2016 %t A215771 t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Dec 18 2013, translated from Maple *) %t A215771 rows = 10; %t A215771 t = Table[If[n<2, 1, n!/2], {n, 0, rows}]; %t A215771 T[n_, k_] := BellY[n, k, t]; %t A215771 Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018, after _Peter Luschny_ *) %o A215771 (Sage) # uses[bell_matrix from A264428] %o A215771 bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8) %Y A215771 Columns k=0-10 give: A000007, A001710(n-1) for n>0, A215772, A215763, A215764, A215765, A215766, A215767, A215768, A215769, A215770. %Y A215771 Diagonal and lower diagonals give: A000012, A000217, A001296, A215773, A215774. %Y A215771 Row sums give A002135. %Y A215771 T(2n,n) gives A253276. %K A215771 nonn,tabl %O A215771 0,9 %A A215771 _Alois P. Heinz_, Aug 23 2012