cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215784 Number of permutations of 0..floor((n*6-1)/2) on even squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.

Original entry on oeis.org

1, 2, 12, 29, 189, 458, 2988, 7241, 47241, 114482, 746892, 1809989, 11808549, 28616378, 186696108, 452432081, 2951712081, 7153064162, 46667304972, 113091730349, 737821743309, 1788008493098, 11665145978028, 28268860698521
Offset: 1

Views

Author

R. H. Hardin, Aug 23 2012

Keywords

Comments

Column 6 of A215788.

Examples

			Some solutions for n=4:
..0..x..1..x..3..x....0..x..1..x..3..x....0..x..1..x..2..x....0..x..1..x..2..x
..x..2..x..5..x..8....x..2..x..5..x..7....x..3..x..4..x..6....x..3..x..4..x..5
..4..x..6..x..9..x....4..x..6..x..9..x....5..x..7..x..9..x....6..x..7..x..9..x
..x..7..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11
		

Crossrefs

Cf. A215788.

Formula

Empirical: a(n) = 16*a(n-2) - 3*a(n-4).
Empirical g.f.: x*(1 + 3*x)*(1 - x - x^2) / (1 - 16*x^2 + 3*x^4). - Colin Barker, Jul 23 2018