A215784 Number of permutations of 0..floor((n*6-1)/2) on even squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1, 2, 12, 29, 189, 458, 2988, 7241, 47241, 114482, 746892, 1809989, 11808549, 28616378, 186696108, 452432081, 2951712081, 7153064162, 46667304972, 113091730349, 737821743309, 1788008493098, 11665145978028, 28268860698521
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..x..1..x..3..x....0..x..1..x..3..x....0..x..1..x..2..x....0..x..1..x..2..x ..x..2..x..5..x..8....x..2..x..5..x..7....x..3..x..4..x..6....x..3..x..4..x..5 ..4..x..6..x..9..x....4..x..6..x..9..x....5..x..7..x..9..x....6..x..7..x..9..x ..x..7..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11....x..8..x.10..x.11
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A215788.
Formula
Empirical: a(n) = 16*a(n-2) - 3*a(n-4).
Empirical g.f.: x*(1 + 3*x)*(1 - x - x^2) / (1 - 16*x^2 + 3*x^4). - Colin Barker, Jul 23 2018
Comments