A215785 Number of permutations of 0..floor((n*7-1)/2) on even squares of an n X 7 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1, 5, 42, 262, 2465, 15485, 146205, 918637, 8674386, 54503318, 514658321, 3233726365, 30535100957, 191859642509, 1811672635826, 11383190276278, 107488026474001, 675374034791837, 6377352953765373, 40070496565665517
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..x..1..x..2..x..3....0..x..1..x..3..x..4....0..x..1..x..2..x..6 ..x..4..x..6..x..7..x....x..2..x..5..x..6..x....x..3..x..4..x..8..x ..5..x..8..x..9..x.12....7..x..8..x..9..x.10....5..x..7..x.10..x.12 ..x.10..x.11..x.13..x....x.11..x.12..x.13..x....x..9..x.11..x.13..x
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A215788.
Formula
Empirical: a(n) = 61*a(n-2) - 99*a(n-4) - 2*a(n-6).
Empirical g.f.: x*(1 + 5*x - 19*x^2 - 43*x^3 + 2*x^4 - 2*x^5) / (1 - 61*x^2 + 99*x^4 + 2*x^6). - Colin Barker, Jul 23 2018
Comments