A215786 Number of permutations of 0..floor((n*8-1)/2) on even squares of an nX8 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1, 5, 110, 932, 26451, 234217, 6812794, 60485308, 1761748159, 15643423061, 455678075546, 4046220880948, 117863060852067, 1046572601513969, 30485799411892266, 270700616010831020, 7885286478349158743
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..x..1..x..3..x..7..x....0..x..1..x..2..x..3..x....0..x..1..x..2..x..5..x ..x..2..x..4..x..9..x.10....x..4..x..6..x..7..x..8....x..3..x..4..x..7..x.11 ..5..x..6..x.11..x.12..x....5..x..9..x.10..x.12..x....6..x..8..x..9..x.13..x ..x..8..x.13..x.14..x.15....x.11..x.13..x.14..x.15....x.10..x.12..x.14..x.15
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 272*a(n-2) -3439*a(n-4) -3336*a(n-6) +140*a(n-8)
Comments