A215787 Number of permutations of 0..floor((n*9-1)/2) on even squares of an nX9 array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1, 14, 462, 11694, 530429, 14296434, 673507749, 18255280444, 862827082115, 23397688110992, 1106178923600669, 29997930933948284, 1418251919293188195, 38461009542931961924, 1818375422885354065137, 49311812528326463481148
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..x..1..x..3..x..6..x..8....0..x..1..x..2..x..6..x.11 ..x..2..x..5..x.10..x.13..x....x..3..x..5..x..8..x.12..x ..4..x..7..x.11..x.14..x.15....4..x..7..x.10..x.14..x.16 ..x..9..x.12..x.16..x.17..x....x..9..x.13..x.15..x.17..x
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 1385*a(n-2) -131648*a(n-4) -318070*a(n-6) -4160916*a(n-8) -1097892*a(n-10) +648*a(n-12)
Comments