A215788 T(n,k)=Number of permutations of 0..floor((n*k-1)/2) on even squares of an nXk array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 5, 2, 1, 1, 1, 1, 5, 12, 10, 4, 1, 1, 1, 1, 5, 42, 29, 25, 4, 1, 1, 1, 1, 14, 110, 262, 189, 50, 8, 1, 1, 1, 1, 14, 462, 932, 2465, 458, 125, 8, 1, 1, 1, 1, 42, 1274, 11694, 26451, 15485, 2988, 250, 16, 1, 1, 1, 1, 42, 6006
Offset: 1
Examples
Some solutions for n=7 k=4 ..0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x....0..x..1..x ..x..2..x..3....x..2..x..4....x..2..x..4....x..2..x..3....x..2..x..3 ..4..x..5..x....3..x..5..x....3..x..5..x....4..x..5..x....4..x..5..x ..x..6..x..8....x..6..x..8....x..6..x..8....x..6..x..7....x..6..x..7 ..7..x..9..x....7..x..9..x....7..x..9..x....8..x..9..x....8..x..9..x ..x.10..x.12....x.10..x.12....x.10..x.11....x.10..x.12....x.10..x.11 .11..x.13..x...11..x.13..x...12..x.13..x...11..x.13..x...12..x.13..x
Links
- R. H. Hardin, Table of n, a(n) for n = 1..140
Formula
Empirical for column k:
k=4: a(n) = 2*a(n-2)
k=5: a(n) = 5*a(n-2)
k=6: a(n) = 16*a(n-2) -3*a(n-4)
k=7: a(n) = 61*a(n-2) -99*a(n-4) -2*a(n-6)
k=8: a(n) = 272*a(n-2) -3439*a(n-4) -3336*a(n-6) +140*a(n-8)
k=9: a(n) = 1385*a(n-2) -131648*a(n-4) -318070*a(n-6) -4160916*a(n-8) -1097892*a(n-10) +648*a(n-12)
Comments