This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215852 #20 Apr 22 2021 08:48:00 %S A215852 1,3,19,135,1267,15029,218627,3783582,75956664,1734309929,44357222772, %T A215852 1255715827483,38971877812380,1315634598619830,47994245894462576, %U A215852 1881406032047006812,78870928008704884848,3520953336130828001295,166762291211479030734580 %N A215852 Number of simple labeled graphs on n nodes with exactly 2 connected components that are trees or cycles. %H A215852 Alois P. Heinz, <a href="/A215852/b215852.txt">Table of n, a(n) for n = 2..145</a> %F A215852 a(n) ~ c * n^(n-2), where c = 0.511564031298... . - _Vaclav Kotesovec_, Sep 07 2014 %e A215852 a(3) = 3: %e A215852 .1 2. .1-2. .1 2. %e A215852 .|. . . . . . / . %e A215852 .3... .3... .3... %p A215852 T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, %p A215852 `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)* %p A215852 `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) %p A215852 end: %p A215852 a:= n-> T(n, 2): %p A215852 seq(a(n), n=2..25); %t A215852 T[n_, k_]:=T[n, k]=If[k<0 || k>n, 0, If[n==0, 1, Sum[Binomial[n - 1, i] T[n - 1 - i, k - 1] If[i<2, 1, i!/2 + (i + 1)^(i - 1)], {i, 0, n - k}]]]; Table[T[n, 2], {n, 2, 50}] (* _Indranil Ghosh_, Aug 07 2017, after Maple *) %o A215852 (Python) %o A215852 from sympy.core.cache import cacheit %o A215852 from sympy import binomial, factorial as f %o A215852 @cacheit %o A215852 def T(n, k): return 0 if k<0 or k>n else 1 if n==0 else sum([binomial(n - 1, i)*T(n - 1 - i, k - 1)*(1 if i<2 else f(i)//2 + (i + 1)**(i - 1)) for i in range(n - k + 1)]) %o A215852 def a(n): return T(n , 2) %o A215852 print([a(n) for n in range(2, 51)]) # _Indranil Ghosh_, Aug 07 2017, after maple code %Y A215852 Column k=2 of A215861. %Y A215852 The unlabeled version is A215982. %K A215852 nonn %O A215852 2,2 %A A215852 _Alois P. Heinz_, Aug 25 2012