This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215853 #15 Apr 01 2017 19:01:17 %S A215853 1,6,55,540,6412,90734,1515097,29368155,649910349,16178495157, %T A215853 447436384356,13607804913248,451277483034618,16204761730619392, %U A215853 626327433705523558,25924177756443661632,1144012780063556028591,53615833082093775740400,2659498185704802765924159 %N A215853 Number of simple labeled graphs on n nodes with exactly 3 connected components that are trees or cycles. %H A215853 Alois P. Heinz, <a href="/A215853/b215853.txt">Table of n, a(n) for n = 3..145</a> %F A215853 a(n) ~ c * n^(n-2), where c = 0.130848879059... . - _Vaclav Kotesovec_, Sep 07 2014 %e A215853 a(4) = 6: %e A215853 .1-2. .1 2. .1 2. .1 2. .1 2. .1 2. %e A215853 . . . |. . . .| . . \ . . / . %e A215853 .4 3. .4 3. .4-3. .4 3. .4 3. .4 3. %p A215853 T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, %p A215853 `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)* %p A215853 `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) %p A215853 end: %p A215853 a:= n-> T(n, 3): %p A215853 seq(a(n), n=3..25); %t A215853 T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*T[n-1-i, k-1]*If[i<2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]]]; %t A215853 a[n_] := T[n, 3]; %t A215853 Table[a[n], {n, 3, 25}] (* _Jean-François Alcover_, Apr 01 2017, translated from Maple *) %Y A215853 Column k=3 of A215861. %Y A215853 The unlabeled version is A215983. %K A215853 nonn %O A215853 3,2 %A A215853 _Alois P. Heinz_, Aug 25 2012