This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215854 #13 Dec 04 2014 06:53:44 %S A215854 1,10,125,1610,23597,394506,7533445,163190665,3971678359,107502644249, %T A215854 3205669601953,104435680520535,3690517248021753,140590728463023632, %U A215854 5743180320999041664,250423270549658253350,11608409727652016747176,570034426072900362961212 %N A215854 Number of simple labeled graphs on n nodes with exactly 4 connected components that are trees or cycles. %H A215854 Alois P. Heinz, <a href="/A215854/b215854.txt">Table of n, a(n) for n = 4..145</a> %e A215854 a(4) = 1: the graph with 4 1-node trees. %e A215854 a(5) = 10: each graph has one 2-node tree and 3 1-node trees, and C(5,2) = 10. %p A215854 T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, %p A215854 `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)* %p A215854 `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) %p A215854 end: %p A215854 a:= n-> T(n, 4): %p A215854 seq(a(n), n=4..25); %Y A215854 Column k=4 of A215861. %Y A215854 The unlabeled version is A215984. %K A215854 nonn %O A215854 4,2 %A A215854 _Alois P. Heinz_, Aug 25 2012