cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215866 Number of permutations of 0..floor((n*6-2)/2) on odd squares of an n X 6 array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing.

Original entry on oeis.org

1, 5, 12, 78, 189, 1233, 2988, 19494, 47241, 308205, 746892, 4872798, 11808549, 77040153, 186696108, 1218024054, 2951712081, 19257264405, 46667304972, 304462158318, 737821743309, 4813622739873, 11665145978028, 76104577363014
Offset: 1

Views

Author

R. H. Hardin, Aug 25 2012

Keywords

Comments

Column 6 of A215870.

Examples

			Some solutions for n=4:
..x..0..x..1..x..4....x..0..x..2..x..3....x..0..x..2..x..3....x..0..x..2..x..3
..2..x..3..x..5..x....1..x..4..x..6..x....1..x..4..x..7..x....1..x..4..x..6..x
..x..6..x..8..x.10....x..5..x..8..x..9....x..5..x..8..x..9....x..5..x..7..x..8
..7..x..9..x.11..x....7..x.10..x.11..x....6..x.10..x.11..x....9..x.10..x.11..x
		

Formula

Empirical: a(n) = 16*a(n-2) -3*a(n-4).
Empirical: g.f.: -x*(x-1)*(2*x^2+6*x+1) / ( 1-16*x^2+3*x^4 ). - R. J. Mathar, Nov 27 2015