This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215870 #13 Nov 27 2015 05:33:57 %S A215870 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,5,4,4,1,1,1,1,5,12,10,4, %T A215870 1,1,1,1,14,29,78,20,8,1,1,1,1,14,110,262,189,50,8,1,1,1,1,42,290, %U A215870 3001,1642,1233,100,16,1,1,1,1,42,1274,11694,26451,15485,2988,250,16,1,1,1,1,132 %N A215870 T(n,k) = Number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing. %C A215870 Table starts %C A215870 .1.1.1..1....1......1.......1.........1.........1..........1........1 %C A215870 .1.1.1..2....2......5.......5........14........14.........42.......42 %C A215870 .1.1.1..2....4.....12......29.......110.......290.......1274.....3532 %C A215870 .1.1.1..4...10.....78.....262......3001.....11694.....170594...727846 %C A215870 .1.1.1..4...20....189....1642.....26451....307874....7027942.98057806 %C A215870 .1.1.1..8...50...1233...15485....767560..14296434.1124811332 %C A215870 .1.1.1..8..100...2988...97289...6812794.386699176 %C A215870 .1.1.1.16..250..19494..918637.198409297 %C A215870 .1.1.1.16..500..47241.5772013 %C A215870 .1.1.1.32.1250.308205 %C A215870 .1.1.1.32.2500 %C A215870 .1.1.1.64 %H A215870 R. H. Hardin, <a href="/A215870/b215870.txt">Table of n, a(n) for n = 1..125</a> %F A215870 Empirical for column k: %F A215870 k=4: a(n) = 2*a(n-2), A016116. %F A215870 k=5: a(n) = 5*a(n-2) for n>3, A026395. %F A215870 k=6: a(n) = 16*a(n-2) -3*a(n-4), A215866. %F A215870 k=7: a(n) = 61*a(n-2) -99*a(n-4) -2*a(n-6), A215867. %F A215870 k=8: a(n) = 272*a(n-2) -3439*a(n-4) -3336*a(n-6) +140*a(n-8). %F A215870 k=9: a(n) = 1385*a(n-2) -131648*a(n-4) -318070*a(n-6) -4160916*a(n-8) -1097892*a(n-10) +648*a(n-12). %e A215870 Some solutions for n=6, k=4: %e A215870 ..x..0..x..1....x..0..x..2....x..0..x..2....x..0..x..1....x..0..x..1 %e A215870 ..2..x..3..x....1..x..3..x....1..x..3..x....2..x..3..x....2..x..3..x %e A215870 ..x..4..x..5....x..4..x..6....x..4..x..5....x..4..x..6....x..4..x..6 %e A215870 ..6..x..7..x....5..x..7..x....6..x..7..x....5..x..7..x....5..x..7..x %e A215870 ..x..8..x.10....x..8..x.10....x..8..x.10....x..8..x.10....x..8..x..9 %e A215870 ..9..x.11..x....9..x.11..x....9..x.11..x....9..x.11..x...10..x.11..x %Y A215870 Column 5 is A026395(n-1). %Y A215870 Row 2 is A000108(floor(n/2)). %Y A215870 Even squares: A215788. %K A215870 nonn,tabl %O A215870 1,12 %A A215870 _R. H. Hardin_, Aug 25 2012