cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215878 Lengths of loops in the P2 Penrose tiling.

Original entry on oeis.org

10, 20, 80, 100, 460, 620, 2780, 3700, 16660, 22220, 99980, 133300, 599860, 799820, 3599180, 4798900, 21595060, 28793420, 129570380, 172760500, 777422260, 1036563020, 4664533580, 6219378100, 27987201460, 37316268620, 167923208780, 223897611700, 1007539252660, 1343385670220, 6045235515980
Offset: 1

Views

Author

Adam P. Goucher, Aug 25 2012

Keywords

Comments

A loop of length n is defined to be an ordered set of n tiles (kites or darts), such that the tile T_i shares an edge with each of T_(i+1) and T_(i-1) (subscripts considered modulo n), but does not share a vertex with any other tile in the loop. These loops are the finite paths traced by gliders in a particular cellular automaton on the P2 Penrose tiling.

Examples

			The smallest loop a(1)=10 corresponds to the 10 kites which form the perimeter of a regular decagon.
		

Programs

  • Mathematica
    Table[{1,1}.MatrixPower[{{5,2},{3,0}},Floor[n/2]].{10,10Mod[n,2]},{n,0,49}]
    Table[-(5/7)(-6^(1/2(n-1))(9+2Sqrt[6]+(-1)^n(-9+2Sqrt[6]))+4(Cos[n Pi/2] + Sin[n Pi/2])), {n, 1, 20}] (* Benedict W. J. Irwin, Nov 01 2016 *)
  • PARI
    Vec(-10*x*(3*x^2+2*x+1)/((x^2+1)*(6*x^2-1)) + O(x^100)) \\ Colin Barker, May 19 2014

Formula

Recurrence relation: a(n+4) = 5*a(n+2) + 6*a(n).
G.f.: -10*x*(3*x^2+2*x+1) / ((x^2+1)*(6*x^2-1)). - Colin Barker, May 19 2014
a(n) = 3*a(n-1)+2*a(n-2) if n is odd. a(n) = 2*a(n-1)-3*a(n-2) if n is even. - R. J. Mathar, Jun 18 2014
a(n) = -5 * ( -6^((n - 1)/2) * (9 + 2*sqrt(6) + (-1)^n * (2 * sqrt(6) - 9)) + 4 * (cos(n * Pi/2) + sin(n * Pi/2)))/7. - Benedict W. J. Irwin, Nov 01 2016