This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215930 #37 May 11 2017 16:51:15 %S A215930 1,1,2,4,8,16,34,71,154,341,768,1765,4134,9838,23766,58226,144353, %T A215930 361899,916152,2339912,6023447,15617254,40752401,106967331,282267774, %U A215930 748500921,1993727506,5332497586,14316894271,38574473086,104273776038,282733466684,768809041078 %N A215930 Number of forests on unlabeled nodes with n edges and no single node trees. %C A215930 Each forest counted by a(n) with n>0 has number of nodes from the interval [n+1,2*n] and number of trees in [1,n]. %C A215930 Also limiting sequence of reversed rows of A095133. %C A215930 Differs from A011782 first at n=6 (32) and from A088325 at n=8 (153). %H A215930 Alois P. Heinz, <a href="/A215930/b215930.txt">Table of n, a(n) for n = 0..650</a> %F A215930 a(n) = A095133(2*n,n). %F A215930 a(n) = A105821(2*n+1,n+1). - _Alois P. Heinz_, Jul 10 2013 %F A215930 a(n) = A136605(2*n+1,n). - _Alois P. Heinz_, Apr 11 2014 %F A215930 a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.955765285..., c = 3.36695186... . - _Vaclav Kotesovec_, Sep 10 2014 %e A215930 a(0) = 1: ( ), the empty forest with 0 trees and 0 edges. %e A215930 a(1) = 1: ( o-o ), 1 tree and 1 edge. o %e A215930 a(2) = 2: ( o-o-o ), ( o-o o-o ). | %e A215930 a(3) = 4: ( o-o-o-o ), ( o-o-o o-o ), ( o-o o-o o-o ), ( o-o-o ). %p A215930 with(numtheory): %p A215930 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A215930 (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) %p A215930 end: %p A215930 t:= proc(n) option remember; local k; `if` (n=0, 1, b(n)- %p A215930 (add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2) %p A215930 end: %p A215930 g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, %p A215930 `if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j)* %p A215930 binomial(t(i)+j-1, j), j=0..min(n/i, p))))) %p A215930 end: %p A215930 a:= n-> g(2*n, 2*n, n): %p A215930 seq(a(n), n=0..40); %t A215930 nn = 30; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0; %t A215930 a[1] = 1; sol = %t A215930 SolveAlways[ %t A215930 0 == Series[ %t A215930 t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x]; %t A215930 b[x_] := Sum[a[n] x^n /. sol, {n, 0, nn}]; ft = %t A215930 Drop[Flatten[ %t A215930 CoefficientList[Series[b[x] - (b[x]^2 - b[x^2])/2, {x, 0, nn}], %t A215930 x]], 1]; Drop[ %t A215930 CoefficientList[ %t A215930 Series[Product[1/(1 - y ^(i - 1))^ft[[i]], {i, 2, nn}], {y, 0, nn}], %t A215930 y], -1] (* _Geoffrey Critzer_, Nov 10 2014 *) %Y A215930 Cf. A000055, A005195, A011782, A051491, A088325, A095133, A105821, A136605. %K A215930 nonn %O A215930 0,3 %A A215930 _Alois P. Heinz_, Aug 27 2012