This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215935 #20 Jan 08 2022 21:11:29 %S A215935 0,0,0,0,0,1,0,0,0,1,0,2,0,1,0,0,0,1,0,1,1,1,0,1,0,1,0,1,0,2,0,0,0,1, %T A215935 0,2,0,1,1,1,0,3,0,1,0,1,0,2,0,1,0,1,0,1,1,2,1,1,0,3,0,1,1,0,0,2,0,1, %U A215935 0,2,0,1,0,1,1,1,0,3,0,2,0,1,0,4,0,1,0,1,0,2,0,1,1 %N A215935 Number of ordered pairs of primes (p, q) dividing n for which p^e = 1 mod q, where e is the exponent of p in n. %C A215935 If n in A056867 then a(n) = 0. %H A215935 Alois P. Heinz, <a href="/A215935/b215935.txt">Table of n, a(n) for n = 1..10000</a> %e A215935 12 is divisible by two primes, 2 and 3. The exponent of 2 is 2 and the exponent of 3 is 1. 2^2 = 1 mod 3 and 3^1 = 1 mod 2, so a(12) = 2. %p A215935 a:= proc(n) local l; l:= ifactors(n)[2]; %p A215935 add(add(`if`(irem(i[1]^i[2], j[1])=1, 1, 0), i=l), j=l) %p A215935 end: %p A215935 seq (a(n), n=1..100); # _Alois P. Heinz_, Aug 28 2012 %t A215935 a[n_] := With[{f = FactorInteger[n]}, Sum[ Boole[ Mod[p[[1]]^p[[2]], q[[1]]] == 1], {p, f}, {q, f}]]; Table[a[n], {n, 1, 93}] (* _Jean-François Alcover_, Sep 03 2012 *) %o A215935 (PARI) a(n)=my(f=factor(n),k=#f~); sum(i=1,k, sum(j=1,k, i!=j && Mod(f[i,1],f[j,1])^f[i,2]==1)) %Y A215935 Cf. A054395, A056867. %K A215935 nonn %O A215935 1,12 %A A215935 _Charles R Greathouse IV_, Aug 27 2012