cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215947 Difference between the sum of the even divisors and the sum of the odd divisors of 2n.

This page as a plain text file.
%I A215947 #59 Sep 26 2023 13:25:00
%S A215947 1,5,4,13,6,20,8,29,13,30,12,52,14,40,24,61,18,65,20,78,32,60,24,116,
%T A215947 31,70,40,104,30,120,32,125,48,90,48,169,38,100,56,174,42,160,44,156,
%U A215947 78,120,48,244,57,155,72,182,54,200,72,232,80,150,60,312,62,160
%N A215947 Difference between the sum of the even divisors and the sum of the odd divisors of 2n.
%C A215947 Multiplicative because a(n) = -A002129(2*n), A002129 is multiplicative and a(1) = -A002129(2) = 1. - _Andrew Howroyd_, Jul 31 2018
%H A215947 Michel Lagneau, <a href="/A215947/b215947.txt">Table of n, a(n) for n = 1..10000</a>
%H A215947 Hartosh Singh Bal and Gaurav Bhatnagar, <a href="https://arxiv.org/abs/2102.10804">Two curious congruences for the sum of divisors function</a>, arXiv:2102.10804 [math.NT], 2021. Mentions this sequence.
%H A215947 H. Movasati and Y. Nikdelan, <a href="http://arxiv.org/abs/1603.09411">Gauss-Manin Connection in Disguise: Dwork Family</a>, arXiv preprint arXiv:1603.09411 [math.AG], 2016-2017.
%F A215947 From _Andrew Howroyd_, Jul 28 2018: (Start)
%F A215947 a(n) = 4*sigma(n) - sigma(2*n).
%F A215947 a(n) = -A002129(2*n). (End)
%F A215947 G.f.: Sum_{k>=1} x^k*(1 + 4*x^k + x^(2*k))/(1 - x^(2*k))^2. - _Ilya Gutkovskiy_, Sep 14 2019
%F A215947 a(p) = p + 1 for p prime >= 3. - _Bernard Schott_, Sep 14 2019
%F A215947 a(n) = A239050(n) - A062731(n) - _Omar E. Pol_, Mar 06 2021 (after _Andrew Howroyd_)
%F A215947 From _Amiram Eldar_, Nov 18 2022: (Start)
%F A215947 Multiplicative with a(2^e) = 2^(e+2) - 3, and a(p^e) = sigma(p^e) = (p^(e+1) - 1)/(p-1) for p > 2.
%F A215947 Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/8 = 1.2337005... (A111003). (End)
%F A215947 Dirichlet g.f.: zeta(s)*zeta(s-1)*(1+2^(1-s)). - _Amiram Eldar_, Jan 05 2023
%F A215947 From _Peter Bala_, Sep 25 2023: (Start)
%F A215947 a(2*n) = sigma(2*n) + 2*sigma(n); a(2*n+1) = sigma(2*n+1) = A008438(n)
%F A215947 G.f.: A(q) = Sum_{n >= 1} n*q^n*(1 + 3*q^n)/(1 - q^(2*n)).
%F A215947 Logarithmic g.f.: Sum_{n >= 1} a(n)*q^n/n = Sum_{n >= 1} log(1/(1 - q^n)) + Sum_{n >= 1} log(1/(1 - q^(2*n))) = log (G(q)), where G(q) is the g.f. of A002513. (End)
%e A215947 a(6) = 20 because the divisors of 2*6 = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
%p A215947 with(numtheory):for n from 1 to 100 do:x:=divisors(2*n):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m],2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1  then printf(`%d, `,s0-s1):else fi:od:
%t A215947 a[n_] := DivisorSum[2n, (1 - 2 Mod[#, 2]) #&];
%t A215947 Array[a, 62] (* _Jean-François Alcover_, Sep 13 2018 *)
%t A215947 edod[n_]:=Module[{d=Divisors[2n]},Total[Select[d,EvenQ]]-Total[ Select[ d,OddQ]]]; Array[edod,70] (* _Harvey P. Dale_, Jul 30 2021 *)
%o A215947 (PARI) a(n) = 4*sigma(n) - sigma(2*n); \\ _Andrew Howroyd_, Jul 28 2018
%Y A215947 Cf. A000593, A002129, A022998 (Moebius transform), A074400, A195382, A195690.
%Y A215947 Cf. A002513, A062731, A111003, A239050.
%K A215947 nonn,look,mult
%O A215947 1,2
%A A215947 _Michel Lagneau_, Aug 28 2012