This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215979 #17 Feb 26 2017 05:43:27 %S A215979 1,1,3,6,13,26,56,115,247,533,1175,2636,6040,14078,33401,80524,196897, %T A215979 487781,1222279,3094507,7905992,20364597,52838720,138001953,362565398, %U A215979 957687474,2542056376,6777855755,18146153182,48766704695,131517773945,355842838357 %N A215979 Number of simple unlabeled graphs on 2*n nodes with exactly n connected components that are trees or cycles. %C A215979 Limiting sequence of reversed rows of A215977. Also central elements of rows of A215977. %H A215979 Alois P. Heinz, <a href="/A215979/b215979.txt">Table of n, a(n) for n = 0..200</a> %F A215979 a(n) = A215977(2*n,n). %F A215979 a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.9557652856..., c = 4.034813602... . - _Vaclav Kotesovec_, Aug 31 2014 %e A215979 a(3) = 6: .o-o o. .o-o o. .o-o o. .o-o o. .o-o o. .o o o. %e A215979 .| | . .| . .|\ . .|/ . .| . .| | |. %e A215979 .o-o o. .o-o o. .o o o. .o o-o. .o o-o. .o o o. %p A215979 with(numtheory): %p A215979 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A215979 (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) %p A215979 end: %p A215979 g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)- %p A215979 (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2 %p A215979 end: %p A215979 p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1, %p A215979 `if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)* %p A215979 p(n-i*j, i-1, t-j), j=0..min(n/i,t))))) %p A215979 end: %p A215979 a:= n-> p(2*n, 2*n, n): %p A215979 seq(a(n), n=0..35); %t A215979 b[n_] := b[n] = If[n <= 1, n, (Sum[DivisorSum[j, #*b[#]&]*b[n-j], {j, 1, n-1}])/(n-1)]; %t A215979 g[n_] := g[n] = If[n > 2, 1, 0] + b[n] - (Sum[b[k]*b[n-k], {k, 0, n}] - If[EvenQ[n], b[n/2], 0])/2; %t A215979 p[n_, i_, t_] := p[n, i, t] = If[n < t, 0, If[n == t, 1, If[Min[i, t]<1, 0, Sum[Binomial[g[i]+j-1, j]*p[n-i*j, i-1, t-j], {j, 0, Min[n/i, t]}]]]]; %t A215979 a[n_] := p[2*n, 2*n, n]; %t A215979 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, Feb 26 2017, after _Alois P. Heinz_ *) %Y A215979 Cf. A215977, A051491. %K A215979 nonn %O A215979 0,3 %A A215979 _Alois P. Heinz_, Aug 29 2012