This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215984 #8 Dec 04 2014 06:54:29 %S A215984 1,1,3,6,13,25,53,106,224,475,1037,2315,5302,12382,29495,71450,175618, %T A215984 437272,1101000,2799768,7181703,18565546,48326482,126581749,333424119, %U A215984 882765486,2348114866,6272676477,16822741588,45281587081,122295734356,331331765694 %N A215984 Number of simple unlabeled graphs on n nodes with exactly 4 connected components that are trees or cycles. %H A215984 Alois P. Heinz, <a href="/A215984/b215984.txt">Table of n, a(n) for n = 4..650</a> %e A215984 a(6) = 3: .o-o o. .o-o o. .o o o. %e A215984 .|/ . .| . .| | . %e A215984 .o o o. .o o o. .o o o. %p A215984 with(numtheory): %p A215984 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A215984 (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) %p A215984 end: %p A215984 g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)- %p A215984 (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2 %p A215984 end: %p A215984 p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1, %p A215984 `if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)* %p A215984 p(n-i*j, i-1, t-j), j=0..min(n/i,t))))) %p A215984 end: %p A215984 a:= n-> p(n, n, 4): %p A215984 seq(a(n), n=4..40); %Y A215984 Column k=4 of A215977. %Y A215984 The labeled version is A215854. %K A215984 nonn %O A215984 4,3 %A A215984 _Alois P. Heinz_, Aug 29 2012