This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215986 #7 Dec 04 2014 07:12:41 %S A215986 1,1,3,6,13,26,56,114,244,524,1152,2578,5902,13750,32637,78745,192755, %T A215986 478071,1199357,3039832,7774296,20043911,52049890,136041966,357650346, %U A215986 945253939,2510351950,6696412901,17935526721,48218592753,130083292745,352068892155 %N A215986 Number of simple unlabeled graphs on n nodes with exactly 6 connected components that are trees or cycles. %H A215986 Alois P. Heinz, <a href="/A215986/b215986.txt">Table of n, a(n) for n = 6..650</a> %e A215986 a(8) = 3: .o-o o o. .o-o o o. .o o o o. %e A215986 .|/ . .| . .| | . %e A215986 .o o o o. .o o o o. .o o o o. %p A215986 with(numtheory): %p A215986 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A215986 (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) %p A215986 end: %p A215986 g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)- %p A215986 (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2 %p A215986 end: %p A215986 p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1, %p A215986 `if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)* %p A215986 p(n-i*j, i-1, t-j), j=0..min(n/i,t))))) %p A215986 end: %p A215986 a:= n-> p(n, n, 6): %p A215986 seq(a(n), n=6..40); %Y A215986 Column k=6 of A215977. %Y A215986 The labeled version is A215856. %K A215986 nonn %O A215986 6,3 %A A215986 _Alois P. Heinz_, Aug 29 2012