This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215987 #8 Dec 04 2014 06:57:25 %S A215987 1,1,3,6,13,26,56,115,246,530,1166,2613,5982,13940,33073,79760,195109, %T A215987 483615,1212485,3071358,7850690,20231286,52513864,137202595,360578812, %U A215987 952705531,2529454122,6745724961,18063628118,48553319703,130962595786,354390168855 %N A215987 Number of simple unlabeled graphs on n nodes with exactly 7 connected components that are trees or cycles. %H A215987 Alois P. Heinz, <a href="/A215987/b215987.txt">Table of n, a(n) for n = 7..650</a> %e A215987 a(9) = 3: .o-o o o o. .o-o o o o. .o o o o o. %e A215987 .|/ . .| . .| | . %e A215987 .o o o o . .o o o o . .o o o o . %p A215987 with(numtheory): %p A215987 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A215987 (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) %p A215987 end: %p A215987 g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)- %p A215987 (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2 %p A215987 end: %p A215987 p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1, %p A215987 `if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)* %p A215987 p(n-i*j, i-1, t-j), j=0..min(n/i,t))))) %p A215987 end: %p A215987 a:= n-> p(n, n, 7): %p A215987 seq(a(n), n=7..50); %Y A215987 Column k=7 of A215977. %Y A215987 The labeled version is A215857. %K A215987 nonn %O A215987 7,3 %A A215987 _Alois P. Heinz_, Aug 29 2012