This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215988 #7 Dec 04 2014 06:58:43 %S A215988 1,1,3,6,13,26,56,115,247,532,1172,2627,6017,14020,33263,80196,196133, %T A215988 485993,1218103,3084686,7882748,20309036,52704689,137675229,361761187, %U A215988 955688561,2537043121,6765174365,18113821981,48683671360,131303094976,355284353448 %N A215988 Number of simple unlabeled graphs on n nodes with exactly 8 connected components that are trees or cycles. %H A215988 Alois P. Heinz, <a href="/A215988/b215988.txt">Table of n, a(n) for n = 8..650</a> %e A215988 a(10) = 3: .o-o o o o. .o-o o o o. .o o o o o. %e A215988 .|/ . .| . .| | . %e A215988 .o o o o o. .o o o o o. .o o o o o. %p A215988 with(numtheory): %p A215988 b:= proc(n) option remember; local d, j; `if`(n<=1, n, %p A215988 (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1)) %p A215988 end: %p A215988 g:= proc(n) option remember; local k; `if`(n>2, 1, 0)+ b(n)- %p A215988 (add(b(k)*b(n-k), k=0..n) -`if`(irem(n, 2)=0, b(n/2), 0))/2 %p A215988 end: %p A215988 p:= proc(n, i, t) option remember; `if`(n<t, 0, `if`(n=t, 1, %p A215988 `if`(min(i, t)<1, 0, add(binomial(g(i)+j-1, j)* %p A215988 p(n-i*j, i-1, t-j), j=0..min(n/i,t))))) %p A215988 end: %p A215988 a:= n-> p(n, n, 8): %p A215988 seq(a(n), n=8..50); %Y A215988 Column k=8 of A215977. %Y A215988 The labeled version is A215858. %K A215988 nonn %O A215988 8,3 %A A215988 _Alois P. Heinz_, Aug 29 2012