A216021 a(n) = modlg(n^n, 2^n), where modlg is the function defined in A215894: modlg(a,b) = floor(a / b^floor(logb(a))), logb is the logarithm base b.
1, 1, 3, 1, 3, 11, 50, 1, 2, 9, 33, 129, 550, 2526, 12445, 1, 2, 8, 26, 86, 302, 1103, 4216, 16834, 70064, 303520, 1366413, 6383595, 30907397, 154895272, 802588710, 1, 2, 7, 23, 69, 215, 685, 2242, 7523, 25881, 91237, 329377, 1217078, 4600595, 17781207, 70234475
Offset: 1
Keywords
Examples
a(5) = modlg(5^5, 2^5) = floor(3125 / 32^floor(log32(3125))) = floor(3125/32^2) = 3. a(7) = modlg(7^7, 2^7) = floor(823543 / 128^floor(log128(823543))) = floor(823543/128^2) = 50.
Crossrefs
Cf. A215894.
Programs
-
Python
import math def modiv(a, b): return a - b*int(a//b) def modlg(a, b): return a // b**int(math.log(a, b)) for n in range(1, 77): print(modlg(n**n, 2**n), end=', ')
Comments