cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216039 Number of 6 by 6 magic squares with line sum n.

Original entry on oeis.org

1, 96, 14763, 957936, 33177456, 718506720, 10837963166, 122793273216, 1103391397593, 8187061491760, 51724720525317, 284976371277888, 1395347280436638, 6165194801711616, 24889894891691712, 92768491235726640, 321987367305139071, 1048378447871747424, 3222195250935497833, 9398840830661453088
Offset: 0

Views

Author

Guoce Xin, Aug 30 2012

Keywords

Examples

			For n = 1, there are a(1) = 96 order 6 permutation matrices with exactly one 1 in each of the two diagonals.
		

Crossrefs

Cf. A111158.

Formula

G.f.: (x^138+99*x^137+15057*x^136+1002806*x^135+36140317*x^134+823860011*x^133+13197261179*x^132+159778881431*x^131+1540197926928*x^130+12283604989433*x^129+83443844586997*x^128
+493826644119635*x^127+2591895971809073*x^126+12239625173465375*x^125+52618101897021930*x^124
+207948182505922572*x^123+761697282842373791*x^122+2603936594202983265*x^121
+8357520624415623570*x^120+25313244131813040492*x^119+72673216612249799707*x^118
+198540029295827265030*x^117+517913155627899876744*x^116+1293950334879519037064*x^115
+3104565556800370034675*x^114+7170548645642540233444*x^113+15977552472766155842750*x^112
+34412717940513453504180*x^111+71769782821380635837621*x^110+145167679454737704278880*x^109
+285189004474854548554157*x^108+544883332503752228347324*x^107
+1013692519414068545966383*x^106+1838319814003865364502115*x^105
+3253035784774708879439262*x^104+5622314253334154424175766*x^103
+9498907763273239021574685*x^102+15700357961071728256043309*x^101
+25406320589195514110356366*x^100+40277791473075750762252075*x^99
+62597197699253178187339298*x^98+95425280193517651890574674*x^97
+142766762407648666487568356*x^96+209732150155458679271033099*x^95
+302678001784712603830421513*x^94+429303207319389562327707454*x^93
+598674963030494000816618195*x^92+821156092631443052249172731*x^91
+1108206045308608891199410839*x^90+1472032087920610932242371227*x^89
+1925075439230166802560415829*x^88+2479329488091630543216144069*x^87
+3145503368703854928491254853*x^86+3932062984462037001968113054*x^85
+4844201407852058337442332388*x^84+5882809249486653844574028923*x^83
+7043530583232146694988816214*x^82+8315998814445857390844541404*x^81
+9683347293907738803126233896*x^80+11122080015097990434647761713*x^79
+12602367905141556425711508726*x^78+14088806780184052230859053795*x^77
+15541636034748392591830628113*x^76+16918375811338196658691711642*x^75
+18175798884655835561351408187*x^74+19272116367842845200134757907*x^73
+20169228060755970451363952559*x^72+20834872558688610557869003806*x^71
+21244511627696474156825956913*x^70+21382798694422310755770332936*x^69
+21244511627696474156825956913*x^68+20834872558688610557869003806*x^67
+20169228060755970451363952559*x^66+19272116367842845200134757907*x^65
+18175798884655835561351408187*x^64+16918375811338196658691711642*x^63
+15541636034748392591830628113*x^62+14088806780184052230859053795*x^61
+12602367905141556425711508726*x^60+11122080015097990434647761713*x^59
+9683347293907738803126233896*x^58+8315998814445857390844541404*x^57
+7043530583232146694988816214*x^56+5882809249486653844574028923*x^55
+4844201407852058337442332388*x^54+3932062984462037001968113054*x^53
+3145503368703854928491254853*x^52+2479329488091630543216144069*x^51
+1925075439230166802560415829*x^50+1472032087920610932242371227*x^49
+1108206045308608891199410839*x^48+821156092631443052249172731*x^47
+598674963030494000816618195*x^46+429303207319389562327707454*x^45
+302678001784712603830421513*x^44+209732150155458679271033099*x^43
+142766762407648666487568356*x^42+95425280193517651890574674*x^41
+62597197699253178187339298*x^40+40277791473075750762252075*x^39
+25406320589195514110356366*x^38+15700357961071728256043309*x^37
+9498907763273239021574685*x^36+5622314253334154424175766*x^35
+3253035784774708879439262*x^34+1838319814003865364502115*x^33
+1013692519414068545966383*x^32+544883332503752228347324*x^31
+285189004474854548554157*x^30+145167679454737704278880*x^29
+71769782821380635837621*x^28+34412717940513453504180*x^27
+15977552472766155842750*x^26+7170548645642540233444*x^25
+3104565556800370034675*x^24+1293950334879519037064*x^23
+517913155627899876744*x^22+198540029295827265030*x^21
+72673216612249799707*x^20+25313244131813040492*x^19+8357520624415623570*x^18
+2603936594202983265*x^17+761697282842373791*x^16+207948182505922572*x^15
+52618101897021930*x^14+12239625173465375*x^13+2591895971809073*x^12
+493826644119635*x^11+83443844586997*x^10+12283604989433*x^9+1540197926928*x^8
+159778881431*x^7+13197261179*x^6+823860011*x^5
+36140317*x^4+1002806*x^3+15057*x^2+99*x+1)*(x-1)^3/((x^4-1)^5*(x^8-1)^2*(x^3-1)^5*(x^9-1)*(x^5-1)^4*(x^6-1)^6*(x^7-1)^3*(x^10-1)) [typos corrected by Georg Fischer, Apr 17 2020]