This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216054 #28 Mar 20 2013 12:31:09 %S A216054 1,1,0,1,1,0,1,2,0,0,1,3,2,0,0,1,4,5,0,0,0,0,5,9,5,0,0,0,0,5,14,14,0, %T A216054 0,0,0,0,0,19,28,14,0,0,0,0,0,0,19,47,42,0,0,0,0,0,0,0,0,66,89,42,0,0, %U A216054 0,0,0,0,0,0,66,155,131,0,0,0,0,0,0,0,0,0,0,221,286,131,0,0 %N A216054 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1). %C A216054 A hexagon arithmetic of E. Lucas. %D A216054 E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89 %F A216054 T(n,n) = A080937(n). %F A216054 T(n,n+1) = A080937(n+1). %F A216054 T(n,n+2) = A094790(n+1). %F A216054 T(n,n+3) = A094789(n+1). %F A216054 T(n,n4) = T(n,n+5) = A005021(n). %F A216054 Sum_{k, 0<=k<=n} T(n-k,k) = A028495(n). %e A216054 Square array begins: %e A216054 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0 %e A216054 0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1 %e A216054 0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2 %e A216054 0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3 %e A216054 0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4 %e A216054 0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5 %e A216054 0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6 %e A216054 ... %t A216054 Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Mar 18 2013 *) %Y A216054 Cf. A006053, A052547, A096976, A187066, %Y A216054 Cf. Similar sequences A216230, A216228, A216226, A216238 %K A216054 nonn,tabl %O A216054 0,8 %A A216054 _Philippe Deléham_, Mar 16 2013