cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216078 Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order.

This page as a plain text file.
%I A216078 #70 Feb 16 2025 08:33:18
%S A216078 1,1,3,7,27,87,409,1657,9089,43833,272947,1515903,10515147,65766991,
%T A216078 501178937,3473600465,28773452321,218310229201,1949230218691,
%U A216078 16035686850327,153281759047387,1356791248984295,13806215066685433,130660110400259849,1408621900803060705
%N A216078 Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order.
%C A216078 Number of vertex covers and independent vertex sets of the n-1 X n-1 white bishops graph. Equivalently, the number of ways to place any number of non-attacking bishops on the white squares of an n-1 X n-1 board. - _Andrew Howroyd_, May 08 2017
%C A216078 Number of pairs of partitions (A<=B) of [n-1] such that the nontrivial blocks of A are of type {k,n-1-k} if n is even, and of type {k,n-k} if n is odd. - _Francesca Aicardi_, May 28 2022
%H A216078 R. H. Hardin, <a href="/A216078/b216078.txt">Table of n, a(n) for n = 1..210</a>
%H A216078 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a>
%H A216078 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCover.html">Vertex Cover</a>
%H A216078 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WhiteBishopGraph.html">White Bishop Graph</a>
%F A216078 a(n) = Sum_{k=0..m} binomial(m, k)*Bell(m+k+e), with m = floor((n-1)/2), e = (n+1) mod 2 and where Bell(n) is the Bell exponential number A000110(n). - _Francesca Aicardi_, May 28 2022
%F A216078 From _Vaclav Kotesovec_, Jul 29 2022: (Start)
%F A216078 a(2*k) = A020556(k).
%F A216078 a(2*k+1) = A094577(k). (End)
%e A216078 Some solutions for n = 5:
%e A216078   x 0   x 0   x 0   x 0   x 0   x 0   x 0   x 0   x 0   x 0
%e A216078   1 x   1 x   1 x   1 x   1 x   1 x   1 x   1 x   1 x   1 x
%e A216078   x 2   x 0   x 0   x 2   x 0   x 1   x 1   x 2   x 2   x 1
%e A216078   0 x   2 x   1 x   3 x   1 x   0 x   2 x   3 x   0 x   0 x
%e A216078   x 3   x 1   x 2   x 2   x 0   x 1   x 1   x 1   x 2   x 0
%e A216078 There are 4 white squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 4 ways to place 1 and 2 ways to place 2 so a(4) = 1 + 4 + 2 = 7. - _Andrew Howroyd_, Jun 06 2017
%p A216078 a:= n-> (m-> add(binomial(m, k)*combinat[bell](m+k+e)
%p A216078            , k=0..m))(iquo(n-1, 2, 'e')):
%p A216078 seq(a(n), n=1..26);  # _Alois P. Heinz_, Oct 03 2022
%t A216078 a[n_] := Module[{m, e}, {m, e} = QuotientRemainder[n - 1, 2];
%t A216078    Sum[Binomial[m, k]*BellB[m + k + e], {k, 0, m}]];
%t A216078 Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Jul 25 2022, after _Francesca Aicardi_ *)
%Y A216078 Column 2 of A216084.
%Y A216078 Row sums of A274106(n-1).
%Y A216078 Cf. A020556, A094577, A216332, A201862, A286423.
%K A216078 nonn
%O A216078 1,3
%A A216078 _R. H. Hardin_, Sep 01 2012