This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216078 #70 Feb 16 2025 08:33:18 %S A216078 1,1,3,7,27,87,409,1657,9089,43833,272947,1515903,10515147,65766991, %T A216078 501178937,3473600465,28773452321,218310229201,1949230218691, %U A216078 16035686850327,153281759047387,1356791248984295,13806215066685433,130660110400259849,1408621900803060705 %N A216078 Number of horizontal and antidiagonal neighbor colorings of the odd squares of an n X 2 array with new integer colors introduced in row major order. %C A216078 Number of vertex covers and independent vertex sets of the n-1 X n-1 white bishops graph. Equivalently, the number of ways to place any number of non-attacking bishops on the white squares of an n-1 X n-1 board. - _Andrew Howroyd_, May 08 2017 %C A216078 Number of pairs of partitions (A<=B) of [n-1] such that the nontrivial blocks of A are of type {k,n-1-k} if n is even, and of type {k,n-k} if n is odd. - _Francesca Aicardi_, May 28 2022 %H A216078 R. H. Hardin, <a href="/A216078/b216078.txt">Table of n, a(n) for n = 1..210</a> %H A216078 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a> %H A216078 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCover.html">Vertex Cover</a> %H A216078 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WhiteBishopGraph.html">White Bishop Graph</a> %F A216078 a(n) = Sum_{k=0..m} binomial(m, k)*Bell(m+k+e), with m = floor((n-1)/2), e = (n+1) mod 2 and where Bell(n) is the Bell exponential number A000110(n). - _Francesca Aicardi_, May 28 2022 %F A216078 From _Vaclav Kotesovec_, Jul 29 2022: (Start) %F A216078 a(2*k) = A020556(k). %F A216078 a(2*k+1) = A094577(k). (End) %e A216078 Some solutions for n = 5: %e A216078 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 %e A216078 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x %e A216078 x 2 x 0 x 0 x 2 x 0 x 1 x 1 x 2 x 2 x 1 %e A216078 0 x 2 x 1 x 3 x 1 x 0 x 2 x 3 x 0 x 0 x %e A216078 x 3 x 1 x 2 x 2 x 0 x 1 x 1 x 1 x 2 x 0 %e A216078 There are 4 white squares on a 3 X 3 board. There is 1 way to place no non-attacking bishops, 4 ways to place 1 and 2 ways to place 2 so a(4) = 1 + 4 + 2 = 7. - _Andrew Howroyd_, Jun 06 2017 %p A216078 a:= n-> (m-> add(binomial(m, k)*combinat[bell](m+k+e) %p A216078 , k=0..m))(iquo(n-1, 2, 'e')): %p A216078 seq(a(n), n=1..26); # _Alois P. Heinz_, Oct 03 2022 %t A216078 a[n_] := Module[{m, e}, {m, e} = QuotientRemainder[n - 1, 2]; %t A216078 Sum[Binomial[m, k]*BellB[m + k + e], {k, 0, m}]]; %t A216078 Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Jul 25 2022, after _Francesca Aicardi_ *) %Y A216078 Column 2 of A216084. %Y A216078 Row sums of A274106(n-1). %Y A216078 Cf. A020556, A094577, A216332, A201862, A286423. %K A216078 nonn %O A216078 1,3 %A A216078 _R. H. Hardin_, Sep 01 2012