cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216124 Primes which are the nearest integer to the geometric mean of the previous prime and the following prime.

This page as a plain text file.
%I A216124 #28 Jun 19 2024 15:07:30
%S A216124 3,5,7,23,53,157,173,211,257,263,373,563,593,607,653,733,947,977,1103,
%T A216124 1123,1187,1223,1367,1511,1747,1753,1907,2287,2417,2677,2903,2963,
%U A216124 3307,3313,3637,3733,4013,4409,4457,4597,4657,4691,4993,5107,5113,5303,5387,5393
%N A216124 Primes which are the nearest integer to the geometric mean of the previous prime and the following prime.
%C A216124 The geometric mean of two primes p and q is sqrt(pq).
%H A216124 Harvey P. Dale, <a href="/A216124/b216124.txt">Table of n, a(n) for n = 1..1000</a>
%e A216124 The prime before 3 is 2 and the prime after 3 is 5. 2 * 5 = 10 and the geometric mean of 2 and 5 is therefore sqrt(10) = 3.16227766..., which rounds to 3. Therefore 3 is in the sequence.
%e A216124 The geometric mean of 7 and 13 is 9.539392... which rounds up to 10, well short of 11, hence 11 is not in the sequence.
%p A216124 A := {}: for n from 2 to 1000 do p1 := ithprime(n-1): p := ithprime(n); p2 := ithprime(n+1): if p = round(sqrt(p1*p2)) then A := `union`(A, {p}) end if end do; A := A;
%t A216124 Prime[Select[Range[2, 700], Prime[#] == Round[Sqrt[Prime[# - 1] Prime[# + 1]]] &]] (* _Alonso del Arte_, Sep 01 2012 *)
%t A216124 Select[Partition[Prime[Range[750]],3,1],Round[GeometricMean[{#[[1]],#[[3]]}]]==#[[2]]&][[;;,2]] (* _Harvey P. Dale_, Feb 28 2024 *)
%o A216124 (PARI) lista(nn) = forprime (p=2, nn, if (round(sqrt(precprime(p-1)*nextprime(p+1))) == p, print1(p, ", "))); \\ _Michel Marcus_, Apr 08 2015
%o A216124 (Python)
%o A216124 from math import isqrt
%o A216124 from itertools import islice
%o A216124 from sympy import nextprime, prevprime
%o A216124 def A216124_gen(startvalue=3): # generator of terms >= startvalue
%o A216124     q = max(3,nextprime(startvalue-1))
%o A216124     p = prevprime(q)
%o A216124     r = nextprime(q)
%o A216124     while True:
%o A216124         if q == (m:=isqrt(k:=p*r))+(k-m*(m+1)>=1):
%o A216124             yield q
%o A216124         p, q, r = q, r, nextprime(r)
%o A216124 A216124_list = list(islice(A216124_gen(),20)) # _Chai Wah Wu_, Jun 19 2024
%Y A216124 Cf. A216101, A090076.
%K A216124 nonn
%O A216124 1,1
%A A216124 _César Eliud Lozada_, Sep 01 2012
%E A216124 More terms from _Michel Marcus_, Apr 08 2015