This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216135 #20 Feb 19 2025 05:44:39 %S A216135 1,1,4,33,424,7440,165846,4487966,142930376,5237697744,217106129040, %T A216135 10043789510832,513016686849624,28676264198255856,1741205465305623240, %U A216135 114124985340571809480,8030944551164700156096,603905270121593669417472,48328182913534662635924544 %N A216135 E.g.f. A(x) satisfies: A(x)^A(x) = 1/(1 - x*A(x)^2). %C A216135 More generally, if G(x) = 1/(1 - x*G(x)^p)^(G(x)^q), then %C A216135 [x^n/n! ] G(x)^m = Sum_{k=0..n} m*(p*n+q*k+m)^(k-1) * (-1)^(n-k)*Stirling1(n,k), and %C A216135 [x^n/n! ] log(G(x)) = Sum_{k=1..n} (p*n+q*k)^(k-1) * (-1)^(n-k)*Stirling1(n,k). %C A216135 Generally, if e.g.f. A(x) satisfies A(x)^A(x) = 1/(1-x*A(x)^p), then a(n) ~ s*sqrt((s^s-1)/(p*(s^s-1)*(p*s^s-1)-s)) * n^(n-1) * (s^(p+s)/(s^s-1))^n / exp(n), where s is the root of the equation (1+log(s))*s = (s^s-1)*p. - _Vaclav Kotesovec_, Dec 28 2013 %H A216135 Seiichi Manyama, <a href="/A216135/b216135.txt">Table of n, a(n) for n = 0..357</a> %F A216135 (1) a(n) = Sum_{k=0..n} (2*n-k+1)^(k-1)* (-1)^(n-k)* Stirling1(n,k). %F A216135 Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then %F A216135 (2) a(n,m) = Sum_{k=0..n} m*(2*n-k+m)^(k-1) * (-1)^(n-k) *Stirling1(n,k) ; %F A216135 which is equivalent to the following: %F A216135 (3) a(n,m) = Sum_{k=0..n} m*(2*n-k+m)^(k-1) * {[x^(n-k)] Product_{j=1..n-1} (1+j*x)}; %F A216135 (4) a(n,m) = n!*Sum_{k=0..n} m*(2*n-k+m)^(k-1) * {[x^(n-k)] (-log(1-x)/x)^k/k!}. %F A216135 Limit n->infinity a(n)^(1/n)/n = exp(2*(1-r)/(r-2))*(2-r+exp(r/(2-r))) = 1.7802115440907..., where r = 0.655269699533064... is the root of the equation exp(r/(2-r)) = ((r-2)/r)*(r + LambertW(-1,-r*exp(-r))). - _Vaclav Kotesovec_, Sep 17 2013 %F A216135 a(n) ~ s*sqrt((s^s-1)/(2*(s^s-1)*(2*s^s-1)-s)) * n^(n-1) * (s^(2+s)/(s^s-1))^n / exp(n), where s = 1.627893875694537903318580987... is the root of the equation (1+log(s))*s = 2*(s^s-1). - _Vaclav Kotesovec_, Dec 28 2013 %e A216135 E.g.f. A(x) = 1 + x + 4*x^2/2! + 33*x^3/3! + 424*x^4/4! + 7440*x^5/5! +... %e A216135 where %e A216135 A(x)^A(x) = 1 + x + 6*x^2/2! + 60*x^3/3! + 864*x^4/4! + 16360*x^5/5! +... %e A216135 1/(1-x*A(x)^2) = 1 + x + 6*x^2/2! + 60*x^3/3! + 864*x^4/4! + 16360*x^5/5! +... %t A216135 Table[Sum[(2*n-k+1)^(k-1)*(-1)^(n-k)*StirlingS1[n,k],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Sep 17 2013 *) %o A216135 (PARI) a(n, m=1)=sum(k=0, n, m*(2*n-k+m)^(k-1)*(-1)^(n-k)*stirling(n, k, 1)); %o A216135 for(n=0,21,print1(a(n),", ")) %o A216135 (PARI) {a(n, m=1)=sum(k=0, n, m*(2*n-k+m)^(k-1)*polcoeff(prod(j=1, n-1, 1+j*x), n-k))} %o A216135 for(n=0,21,print1(a(n),", ")) %o A216135 (PARI) {a(n)=local(A=1+x); for(i=0, n, A=exp(-log(1-x*(A^2+x*O(x^n)))/A)); n!*polcoeff(A, n)} %o A216135 for(n=0,21,print1(a(n),", ")) %Y A216135 Cf. A141209, A216136, A229237. %K A216135 nonn %O A216135 0,3 %A A216135 _Paul D. Hanna_, Sep 01 2012