This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216152 #11 Jul 08 2019 06:55:05 %S A216152 1,2,12,48,144,1440,34560,483840,7257600,58060800,3135283200, %T A216152 125411328000,2633637888000,57940033536000,5562243219456000, %U A216152 27811216097280000,723091618529280000,6507824566763520000,364438175738757120000,327994358164881408000000 %N A216152 A205957(n) where n is a nonprime number. %C A216152 The distinct values of A205957. Partial products of A216153. %C A216152 a(1),...,a(10) are highly totient numbers (A097942) and products of distinct factorials (A058295). The author conjectures that this is true in general. %H A216152 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/VonMangoldtTransformation">The von Mangoldt Transformation.</a> %F A216152 a(n) = A205957(A018252(n)). %t A216152 A205957[n_] := Exp[-Sum[MoebiusMu[p] Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; %t A216152 Table[A205957[n], {n, 0, 30}] // DeleteDuplicates (* _Jean-François Alcover_, Jul 08 2019 *) %o A216152 (Sage) %o A216152 # sorted(list(set([A205957(n) for n in (0..31)]))) %o A216152 def A216152_list(n) : %o A216152 C = filter(lambda k: not is_prime(k), (1..n)) %o A216152 return [A205957(c) for c in C] %o A216152 A216152_list(31) %Y A216152 Cf. A051451. %K A216152 nonn %O A216152 1,2 %A A216152 _Peter Luschny_, Sep 02 2012